

THE COMPLETE SOFTWARE PACKAGE FOR

- Rotor Dynamics
- Torsional Vibration
- Fluid-Film Bearings
- Rolling-Element Bearings
- Lubricant Performance
- Tools / Utilities

Workstation and Enterprise Licensing Available

Please contact *Dr. Andreas Laschet* as RBTS' consultant and representation for the regions **Europe, Middle East, Africa** with the following communication details:

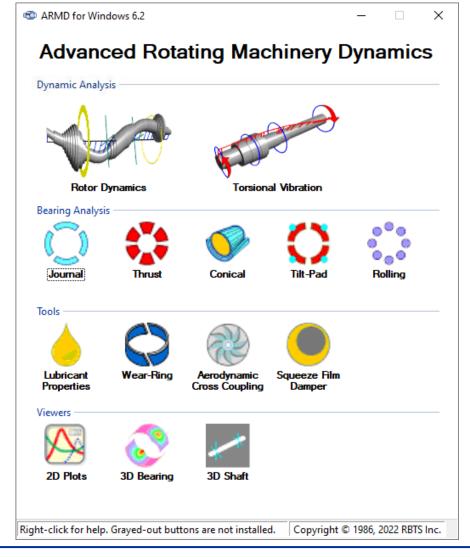
Laschet Consulting GmbH · Friedrich-Ebert-Str. 75 · 51429 Bergisch Gladbach · GERMANY Phone: +49 2204 84-2630 · E-mail: <u>info@laschet.com</u> · Web: <u>www.laschet.com</u>

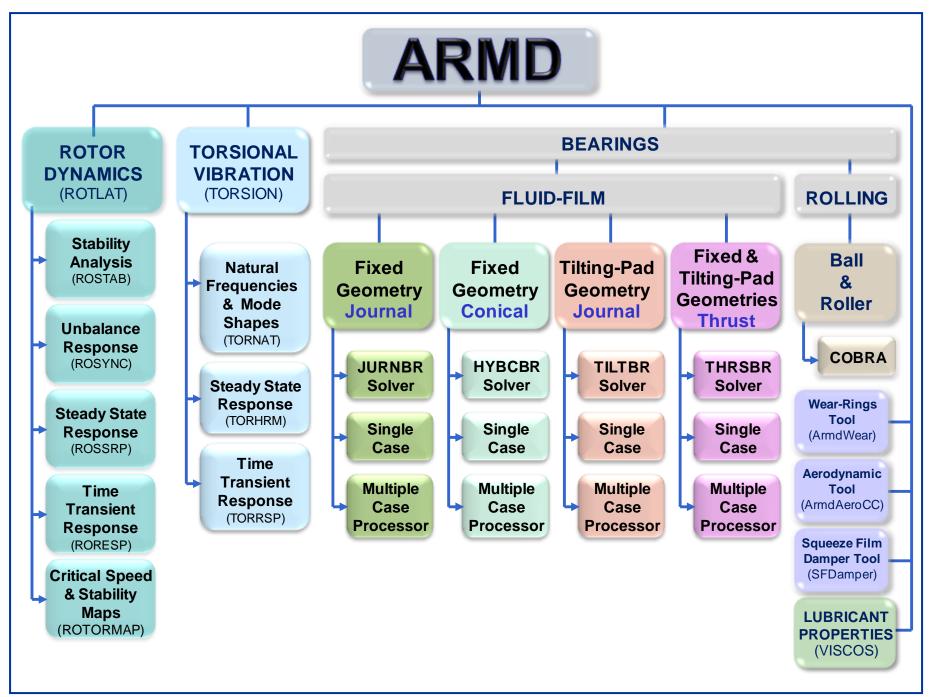
Rev:20210330

Advanced Rotating Machinery Dynamics тм RM THE COMPLETE SOFTWARE UTILIZED WORLDWIDE Heart Pumps & **Blood Bearings** LPC HP IP LPA LPB Generator Turbine Turbine Turbine Turbine Turbine \geq ~ \leq \leq ~ < 772 $\overline{\nabla}$ Axial length = 4.62519E+004 mm From Heart Pumps to Turbine-Generator-Sets

ARMD is the most complete software package available to help you evaluate any bearing, rotor/bearing system, or mechanical drive train. Using leading edge technology and a host of valuable capabilities,

ARMD has been proven effective and accurate in the design, analysis and trouble shooting of rotating machinery by machinery manufacturers, equipment packagers and end users around the world.


ARMD consists of five main modules:


- Rotor Dynamics
- Torsional Vibration
- Fluid-Film Bearings
- Rolling-Element Bearings
- Lubricant Performance
- Vtilities & Support Tools

With a variety of features, including:

- A user-friendly interface
- > Advanced project and file management system
- Graphics/text capabilities
- Inter-module communication and data exchange

All of which operate seamlessly in an integrated environment.

Rotor Dynamics (**ROTLAT**[™])

The rotor dynamics lateral vibration analysis package ROTLAT is a finite element based software for performing damped and undamped naturalfrequencies / critical-speeds, mode shapes, stability, unbalance response, and time-transient response. Tab ROTLAT consists of four sub-modules: ROSTAB. ROTORMAP, ROSYNC, and RORESP integrated by ROTLAT's user interface. The user interface controls the sub-modules to provide a complete rotor/bearing system dynamic analysis environment integrating the rotating assembly with its support bearings, wear-Too rings, seals, aerodynamic effects, support structural Strip flexibilities, etc.

ROTLAT incorporates advanced modeling features and capabilities including the following:

- Rotor of various configurations:
- Solid, Hollow, Tapered & Stepped.
- Shaft material damping.
- Gyroscopic effects (discs with angular degrees of freedom).
- Element geometry, stiffness diameter, or element stiffness (i.e. flexible connections or plates).
- Bearings of all types: Cylindrical, Conical, Tilting Pad & Rolling Element with/without moment stiffness or tilting-pad pitch degrees of freedom.
- Bearing models linked to rotating assembly at any station.
- Bearings vertical elevation for accurate bearings load computation of multi-bearing systems.
- Springs: wear-rings, seals, aero-dynamic effects, squeezefilm dampers, etc.
- Springs models linked to rotating assembly at any station.
- Bearings support systems; casing and foundations.
- Static foundation/pedestal flexibility (mass, stiffness and damping).
- Dynamic (frequency dependent) foundation flexibility.
- Discs: couplings, impellers, sleeves, etc.
- Moment release (pin-joint) at shaft stations.
- Multiple unbalance forces at any location and phase orientation along the shaft.
- External excitations and body forces: sinusoidal, step, ramp and pulse type functions.

)						Aut									natical		
	G		D/	ator D	vnam	nice (I	CALLER	arc\ Dubl	lic\Docu	mont						Com	proce	or100	Load				evalu		×
	-	File	Edit			Optio		pplied Lo				Tools	Wind					51100	LUau	-Dasei	_ine.roi	31)			
				Syste					oads Ru 📸 Paste					Conve	Projec + Unit		lelp isert V	alue	-((1)	5∧2±1	.8^2))-3	12	¥	1	-
		INCOV		open g	3000	< 00	Cut	E coby	- Faste		ystern	Model		Stiffr			SCIT VI	arue.	-((1.	5 211	.0 2)) 3	.13		J	_
		0										Syster	_	Diam										X	
<u>s</u>		Mat	erials	Elemer	nts Di	iscs	Bearing	s Bearin	g Loads 🕴	Speeds	Statio	: Pedesta	als (D)	namic I	edesta	als S	prings: \$	Seals &	More	Element	Stiffness	Station	Moment F	Release	
l					Mate Num		Taper	Length	OD1	ID1	OD2	ID2	Use Stiffne Dian	SS Diar	ness neter	Use Specif Stiffne	ied			Name	←		ement		
	F	Ľ	•	11	1			127.5	450.0	0.0	450	.0 0.0			0.0	None	~					Pro	opertie	es	
		ļ		12	1			155.0	485.0	0.0	485	.0 0.0			0.0	None	~								
		1	1	13	2			115.0	731.056	0.0	731.05	6 0.0			0.0	None	~								
d l		÷:		14	2			115.0	731.056	0.0	731.05	56 0.0			0.0		~								
p	\leq	÷		15	3			75.0	877.591	0.0	877.59	0.0	¢						nmary	for Ro	ws 13 - 1	14 -			
		P		16	3			140.0	877.591	0.0	877.59			Shaft			30.0 m	8 kg						^	
		K	<	17	3			140.0	877.591	0.0	877.59			Shaft	Inert	ia (W	IR*) =	22.697	731 kg	-m²					
			•	18	3			140.0	877.591	0.0	877.59			Total	weigh	nt = 2	639.75	3 kg	(Shaft	+ Disc	:)			J	
		Ĵ.	■∟	19	3			140.0	877.591	0.0	877.59	0.0		<									>		
										Ok			Canc	4		H	lelp	1		Γ		r for Syste	em Errors	٦	
										OR			Carlo				ioip			L	• oneon	tion by st			
		Eleme	ent M	aterial N	lumbe	er)			Dat		
																				No	project o	pen	vali	datio	n-
@(So	olver	Optio	ns											_										
Des	cription	Solvers	Options	Natural F	requencie	es / Mod	e Shapes	Unbalance /	Steady State F	lesponse		plied Load fined Applie		pplied	oads										
	Fei	atures / I							lestal / Housing			Stati	on	Т	/pe		Dire	ction	L	.oad	Frequenc	sy Ha	amonic	Phase Ang	jle ^
		\bigcirc	Enable bearing	automatic c and spring	alculation s coefficie	of ents			Pedestal / housing			-		Transien Transien			Force in X Force in X		•	20256.0 47135.0		40.0	0.0		147
		۲	Disable bearing	automatic o and spring	alculation s coefficie	n of ents								Transien			Force in X		-	56625.0		50.0	0.0		624 E
				dy force fac				٩	Static pedest	ai mass, st	×.			Transien			Force in X		-	91693.0		60.0	0.0		9.44
			lirection:			0.0		C	Dynamic (free mass, stiffnes	quency-de is and dam		9	44 Time	Transien		•	Force in X	(•	119250.0 737500.0	9	90.0 30.0	0.0	58.	541
		ΥU	lirection			-1.0					Nat	ural Fre	quenc	y, Mod	e Sha	pes &	Stabil	ity						-	
	So	lver Opti	ons		Alwa	ys use	Inc	dude	Amplitude Outp	ut Units (l	Descri	iption Sol	vers Opti	ons Nat	ural Freq	uencies	/ Mode S	hapes	Unbalanc	ce / Stead	y State Resp	oonse Tim	ne Transient (Simulation	
	Sta	ability an	alysis		4 [DOF V	Gyro	scopics			-	Natural Free	uencies	and Mod	Shape	Options									
			- C	e analysis		7	1	V	Unbalance res	oonse ana		Output C													
		eady Sta me Trans		nse analysis		V		✓ ✓	Steady State re Time Transient			-	iycles/Mi	nute	0	Damp	ing Ratio	ור				_	ode shapes w		
		ne Trans tical Spe		ysis					Time Transient	analysis		01	lertz		C) Log C)ecrement		the crit	tical dampi	ng ratio is be	wole		0.9	
	Sta	ability Ma	ip .			v		7					initical Sp	eed/Stab	lity Map (Condens	sed Outpu	t	0.00	0 10					
				•	500 49	Motor	Driving	Reciproc	ating Com	nracea										Speed Op Bearing Stif			1.000000e	+07	
				nts\ARMD	60\Proje	ect/Mot	orRecipC		SampleCase			sor100Loa	d-Base	.ine.roi	25000.0		•						2.000000e		
Roto	for Driven Reciprocating Compressor Drive Train. or Dynamic Lateral Forced Vibration Analysis-Speed=300RPM - BASELINE or Supported by 1 Journal Brg @ NDE - Support Structure Included.									25000.0 +							Final Bearing Stiffness 2.000000e+13 Speed (Only for gyroscopic analysis) 0.0								
MOIL	n Sup	ported	byij	burnal Bi	IG @ NL	JE-Su	ipport St	ructure inc	audea.						r to plot		10			()		,,			
				TT	T	ΤT	TT				¥ 1	Ŧ													
	-																								
																Ok	c	С	Cancel		Help				2
																Ok	¢	С	ancel		Help				F
				_								_				U.	•	C	-united		(top				

NATURAL FREQUENCY, MODE SHAPE & STABILITY

- Natural frequencies & mode shapes
- Damped and undamped simulation
- Stability parameters (damping ratio, logarithmic decrement)
- Rotor orbit direction (forward/reverse precession)
- Critical speed map •
- Stability map / Campbell diagrams
- Bearing reaction forces
- Shaft weight, deflection, centerline slope
- Shaft moment, shear, & fiber stress diagrams

Synchronous UNBALANCE & STEADY-STATE RESPONSE

- Multiple unbalance planes/forces
- Various types of external excitations & body forces including sinusoidal/harmonic
- Magnitude and phase (Bode plot)
- Dynamic forces and moments
- Vibratory amplitudes and orbits
- Forces and moments transmitted to bearing and foundation
- Foundation vibratory amplitudes
- Rotor shape plots (amplitude & phase)

٠

FREQUENCY

(CPM)

Bra-Orbit-N#002@

Brg-Orbit- N # 013 @

AMPLIFICATION

FACTOR

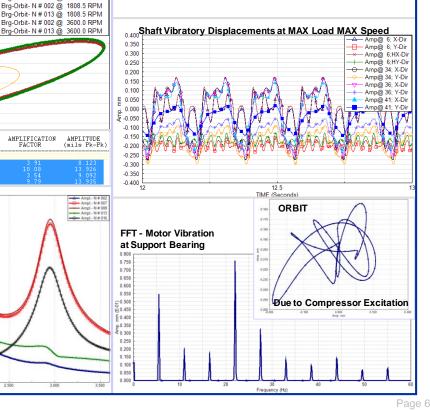
Brg-Orbit- N # 013 @ 500.0 RPM

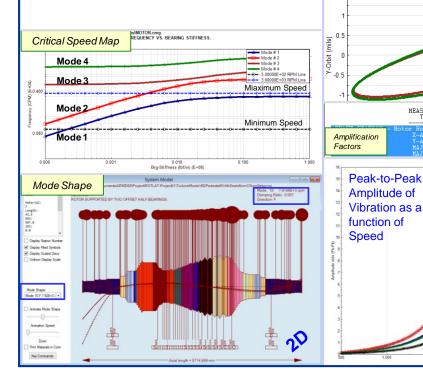
500.0 RPM

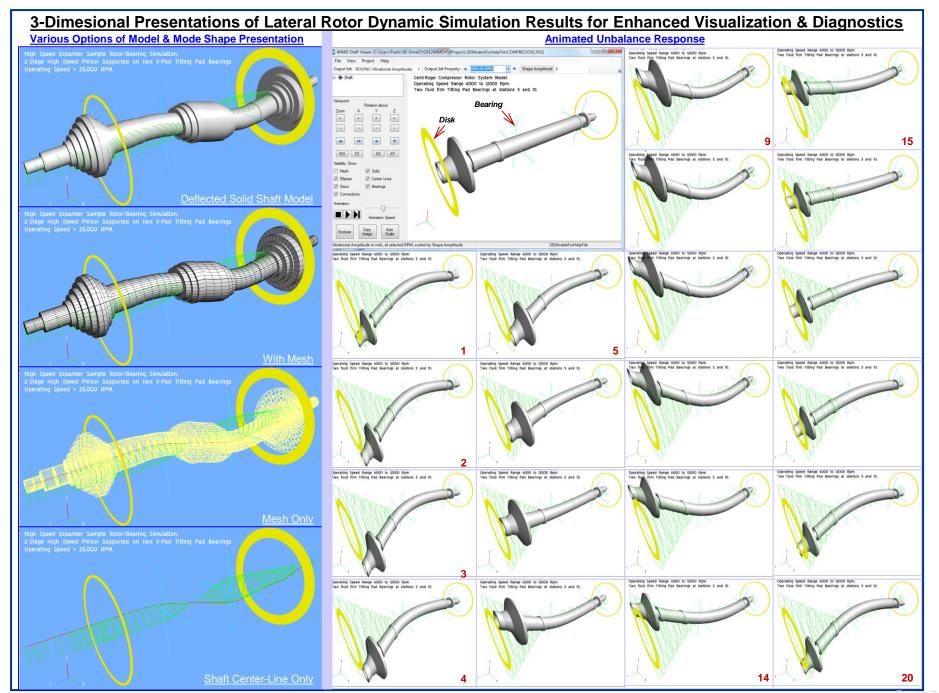
API Amplification factors

MEASUREMENT

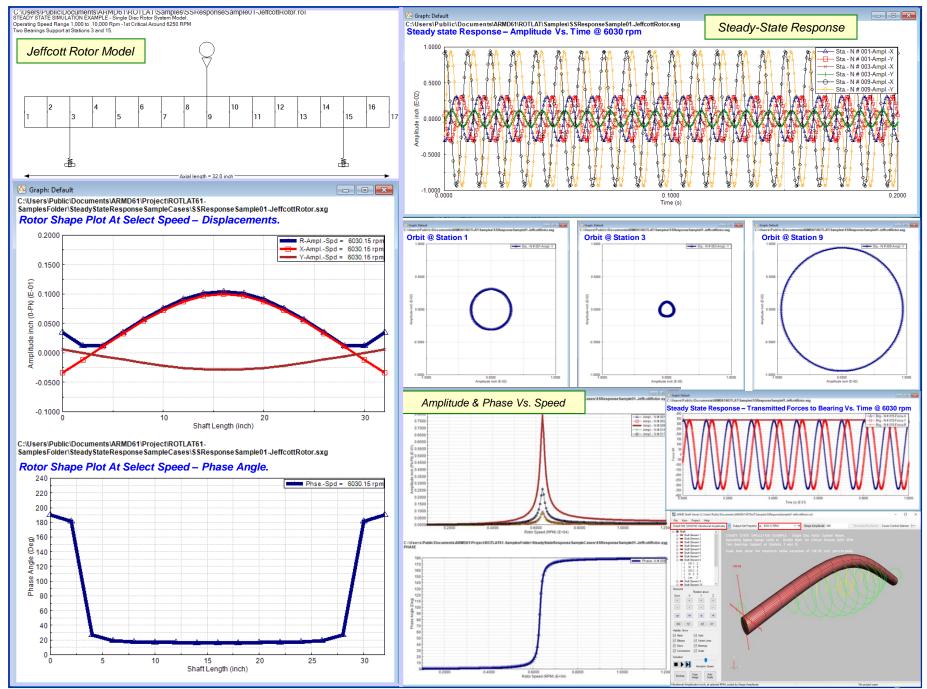
TYPE


Shaft Orbits at


Bearing Locations


2.5

TIME-TRANSIENT RESPONSE (Non-synchronous response)


- Gravitational and external forces: Multiple sinusoidal, step, ramp, pulse and unbalance
- Vibratory amplitudes time history
- Rotor orbits
- Dynamic forces and moments
- Dynamic stresses
- Transmitted forces and moments
- Pedestal vibratory amplitudes

Page

Torsional Vibration (TORSION[™])

🐵 Op

Descri

•

0.0 1st Order Excita

C Steady State Tor

Harmonic Order

The torsional vibration package uses a finiteelement based formulation for performing damped and undamped torsional natural frequencies, mode shapes, steady-state and time-transient response of mechanical drive trains. TORSION consists of three sub-modules TORNAT, TORHRM and TORRSP integrated by TORSION's user interface. The user interface controls the sub-modules to provide a complete torsional vibration analysis environment.

TORSION accepts/imports models generated with the rotor dynamics package "ROTLAT" and has the same advanced modeling features and capabilities including the following:

- Modeling of multi-shaft/multi-branch systems
- Coupling torsional stiffness and damping
- Gear tooth flexibility
- Element stiffness/mass/inertia diameter
- Torsional springs to ground
- Various types of external excitations
- Synchronous motor start-up torque
- Load torgues from such equipment as compressors, pumps, fans, mills, etc.
- Electrical faults for motor and generator

Steady State Harmonic Torques Time Transient Torques Harmonic Torque Import Files

Table No.

Cancel

Manual 👻 Manual 💌

Manual 💌 Manual 💌

Manual 💌 Manual 💌

Manual 💌 Manual 💌

Manual 👻 Manual 💌

Phase

User specified time varying torques

Branch Station Hamonics Edit Import File

1

1

Ok

5

5

Many more...

Harmonic Torque Branch Location

C Applied Torque Tables

2

-91

œ	Þ						Sys	tem								
	Branches	Materials	Elemer	nts Con	nections [Discs	Springs						0	tiffness		
	All Elemer	nts Bran	ch 1 Eler	nents Br	anch 2 Eler	ments							~	iameter		
				Material Number	Use Geometry	Таре	r Length	OD1	ID1	OD2	ID2	Use Stiffness Diam	Stiffness Diameter	Stiffness	Damping	Inertia
	•	1	1	1	~		11.0	7.5	2.36	7.5	2.36		0.0	0.0	0.0	0.0
	*	2	1	1			14.0	8.0	2.36	8.0	2.36		0.0	0.0	0.0	0.0
	—	3	1	1			10.0	9.0	2.36	9.0	2.36		0.0	0.0	0.0	0.0
	۶≡	4	1	1	~	~	20.0	9.0	2.36	11.0	2.36		0.0	0.0	0.0	0.0
		5	1	2	<		15.0	14.0	0.0	14.0	0.0		0.0	0.0	0.0	0.0
		6	1	2	~		20.0	14.0	0.0	14.0	0.0		0.0	0.0	0.0	0.0
	Branch #1	7	_ 1	2	~		15.0	14.0	0.0	14.0	0.0		0.0	0.0	0.0	0.0
		8	1	1	~	~	20.0	11.0	0.0	9.0	0.0		0.0	0.0	0.0	0.0
		9	1	1	~		® S	hoft [lome	ant Co	locti	on Sur	oman/f	or Rows 8 -	11 -	
		10	1	1	~		_					_	initially to	UNINUWS 8 -	11 -	
	P	• 11	1	1	~		Shaft			54.0 967.						
		12	- 1	3	✓		Shaft	Ine	rtia			0222.04	lbf-in			
	_	13	1	1			Shaft	Stif	ffnes	s = 1	.194	514e+08	in-1bf	/radian		
		<u> </u>	1	1			Total	Ine	tia	(WR ^s)	=	10222.0	4 lbf-i	n ^s (Shaft +	+ Disc)	
	-	15	2	1	 ✓ 		<									>
	Branch #2	16 17	2	3			20.0	3.2	0.0	3.2	0.0		0.0	5.500000e+06	0.0	0.0
1	<u>14 1</u>	17	2	5					0.0	4.0	0.0		0.0	0.0	0.0	0.0
Natural Frequencie	es / Mode Sha	pes Steady	State Resp	onse Time	Transient Resp			4.5	0.0	4.5	0.0		0.0	0.0	0.0	0.0
h#1 Speed Rang																>
								ample.	тоі							
\bigcirc	Compute stea	dy state resp	onse at bran	ch #1 speed	d (885.0 F	RPM)								\checkmark	Check for	System Er
0	Compute stea	dv state resp	onse at		885.0 RPM							(γç	9	γγ	9
U		,					E									_
۲	Compute stea	dy state resp	onse over a	range of spe	eds as specifie	d here:										
	Minimum	speed		540.0	RPM								2	46 8	3 10 1: 9 11	14 16 13 157
	Maximum			1320.0	RPM									ംപപ്	a 11	יייייייייייייייייייייייייייייייייייי
	Speed in	crement		1.0	RPM		-									
					J		,									
Station 5			ခု			\bigcirc		(2	9		(7			
rt 2						Ŷ										
Sine Cosine Component Component 0 275652.0 0.0 1																
Cancel	Help]			

NATURAL FREQUENCIES & MODE SHAPES

- Damped and undamped simulation
- Natural frequencies

Fundamental

6.000

5.600

5.200

4.800

4.400

€4.000

<u>₩</u>3.600

\$ 3.200

Q2.800

B 2.400

ش².000

1.200

0.800

0.400

0.000

B

ā

000 1.600

Torsional Twist Mode

Mode 8

Mode 7

Mode 6

Mode 5

- Growth factors and damping ratios
- Vibration mode shapes
- Critical speed map / Campbell diagrams

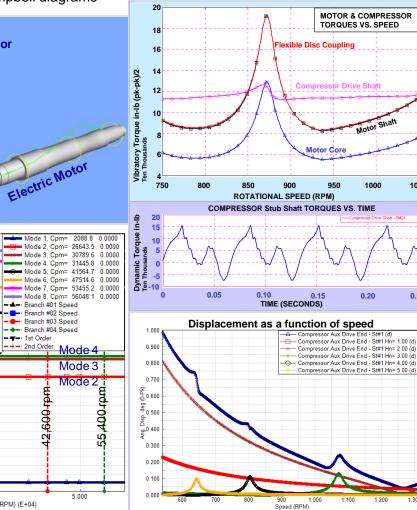
2 High Speed

Pinion-Compressor

Bull

Gear

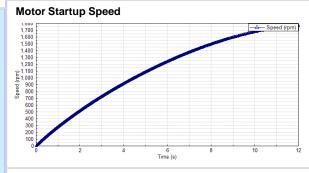
2nd Order


1 st Order

Rotational Speed (RPM) (E+04)

Mode '

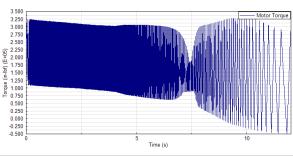
STEADY STATE RESPONSE


- Vibratory amplitudes (displacement, velocity and acceleration)
- Dynamic torques
- Dynamic stresses
- Dynamic heat dissipation

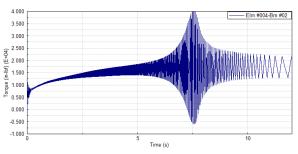
TIME-TRANSIENT RESPONSE

- Dynamic shaft-torque time-history
- Dynamic stresses
- Fatigue life

Sample of synchronous motor-gearbox-compressor timetransient startup and calculated system response torques.



Motor Startup Average Torque


1050

0.25

1 300

High Speed Shaft Torque

Time varying excitations include:

 \triangleright Electrically induced exciting torques, associated with generator and induction motor operation, can be considered in the time-transient response simulation module.

Generator

Type 1: 3-phase short circuit Type 2: Line-to-Line short circuit Type 3: False-coupling short circuit

Induction Motor

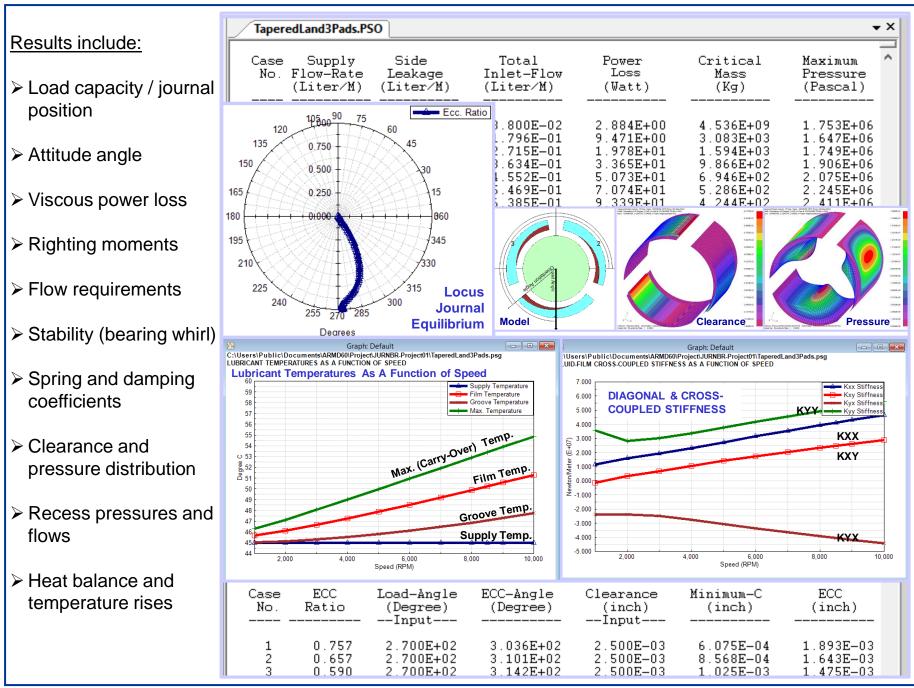
Type 4: Start from standstill (across the line start) Type 5: 3-phase short circuit at terminals Type 6: 2-phase short circuit at terminals Type 7: High-speed automatic reclosing

User torque table (.csv \triangleright file format) representing time-varying exciting torque at any location (e.g. simulation of clutch engagement).

Frequency, Mode Shapes & Respon hree Branch System. High Speed ion-Cor Electric Motol 3-phase short circuit excitation Gear 12 1.3 Time (s) C:\Users\Public\Documents\ARMD\TORSION\TorrspV57 Gtype1 3phase short sample.TRG Elm #006 Elm #00 Torque (in-lb) (x 10^4) 1.0 SYS 0.5 0.0 -0.5 Fundamental **Torsional Twist Mode** 0.0 1.0 20 3.0 Time (s) Generator **3-Dimensional Presentations** Torsional Twist Mode HIP

Bearings Fluid-Film Lubricated Journal & Thrust Bearings with Fixed or Tilting-Pad Configurations Practically any Bearing or Bearing System Available in the Industry can be Analyzed

The ARMD software package has the capabilities of evaluating both fluid-film and rolling-element bearings. Practically any bearing or bearing system available in the industry can be modeled and evaluated with one of the bearing solution modules Modeled Bearing


Details _ The FLUID-FILM bearing modules (JURNBR, HYBCBR, TILTBR, and THRSBR) solve the lubrication problem in two dimensions eliminating any approximation typically associated with one Scroll through dimensional analysis or with look-up table methods. cases.

Complete performance predictions of hydrodynamic, hydrostatic, and hybrid lubricated journal, conical and thrust bearings operating in the laminar and/or turbulent regime can be generated.

Simulation capabilities include such effects as misalignment, pressurized boundaries or grooves, cavitation, surface deviations (structural deformation), lubricant feed circuitry with specified pressures or

restrictors	Single Case Lube Details	-
(capillary,	Lubricant Conditions	-
orifice, or	Solve For Film Temp V	User Specified Visco Grooved
flow control	Film Temperature 160.0 Supply Temperature 120.0	Viscosty / Heat Content Classical Triangular V
valve),	Flow Type Grooved V	Viscosity Grooved None Heat Content Non-Grooved Triangular
groove	Supply Flow Rate 3.0	Circular Rectangular
geometry	Groove Feeding System	
and	Chamfer Type Triangular V Chamfer Depth 0.125	Non - Grooved
chamfers.	Chamfer Angle 90.0	Non - Grooved Feeding System
		# of Onflices per Pad 1 Supply Pressure 150000.0
	Ok Ca	Orfice Discharge Coeff. 0.0 Orfice Diameter 10.0
	Orifice Diameter	

<	Post-Processor	- • •
SModeled	Description Sample Problem 6 - 5 Pad Tilting Pad Journal Bearing. High Speed Test Rig Support Bearings. Pad Privot Stiffness NOT Included.	Pressure/ Clearance Distributions 3D View Buttop
Bearing Details R,	Diameter 3.5 Pad Angle 60.0 # ofPivot Clearances Axial Length 2.5 Orientation Angle 0.0 Viscosity Radial Clearance 0.004 Rotational Speed 20000.0 Full Matrix Run Run Run Run Run	50 1.000000e-06
Scroll through → cases.	Single Case Multiple Cases Lubricant Properties Analysis I 1 of 20 Image: Single Case Lube/Chamfer Image: Single Case Operating Conditions Image: Single Case	3D
с,	Clearance 0.004 Load 5000.0 Load Angle 270.0 Ort. Angle Preload 0.4 Speed 20000.0 Grv. Angle 0.0 No. of Pads	90.0 5.0
ed. Complete Bearing Performance Results including bearing system and individual pad heat balance.	Min.Film Thick> 9.8316E-04 (Inch) ECC = 0.6344 @ Angle = 270.00 (Deg) Power-Loss > 2.5591E+01 (HP) Side-Leakage QF -> 1.7102E+00 (Gpm) Load Capacity> 4.9955E+03 (Lbf) Inlet-Flow QI -> -1.5409E+01 (Gpm)	Generated text output after Run button is pressed
guiar V gular ar angular	Sump/Groove Avg-Film Max-Film Min-Film Power Side Pad Temperature Temperature Temperature Thickness Loss Leakage No. (degree F.) (degree F.) (inch) (hp) (gpm)	ž
150000.0	Ok Cancel Help	

The **FLUID-FILM** bearing modules incorporate numerous templates for common bearings used in industry. In addition, bearing configurations that can be evaluated with the various solution modules include but not limited to:

Fixed Geometry Cylindrical and Conical Journal Bearings (JURNR & HYBCBR)

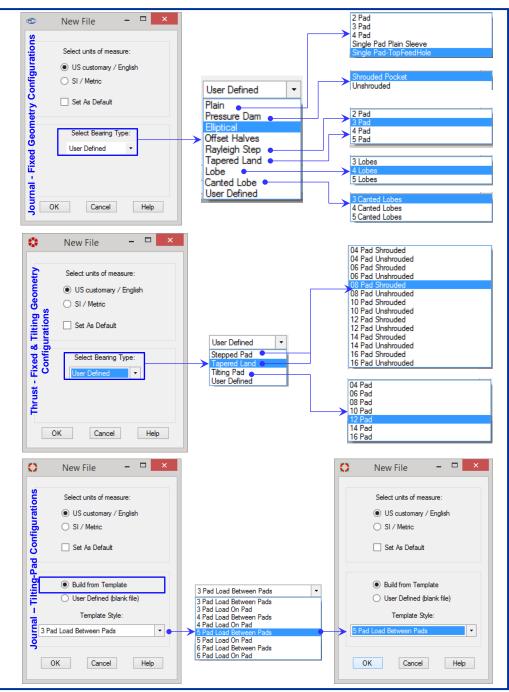
0

0

- Plain surface
- Multi-groove
- Pressure dam
- Elliptical or lemon
- Rayleigh step or pocket

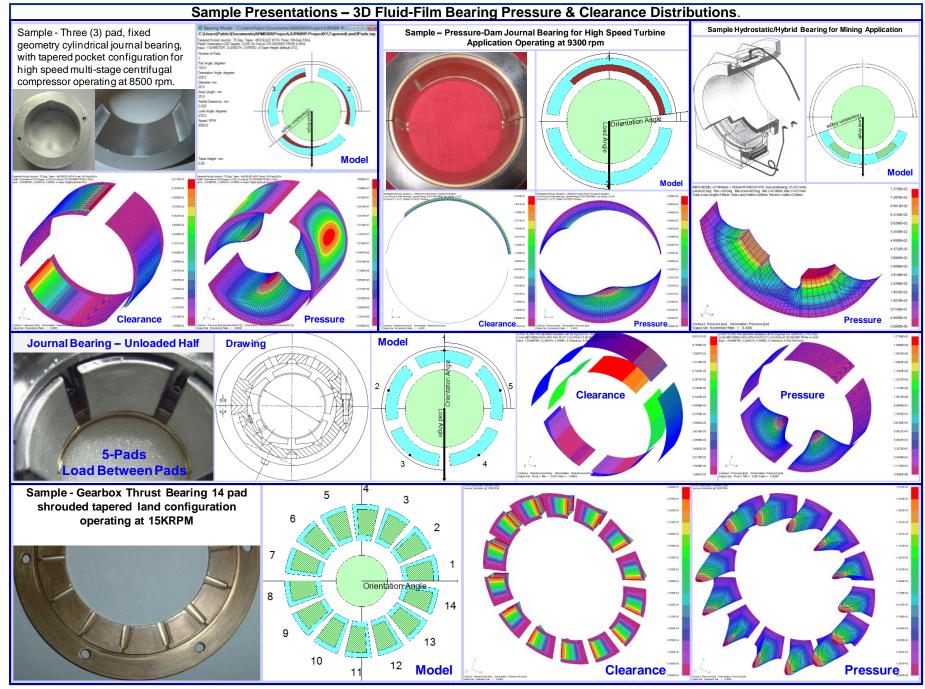
Fixed and Tilting-Pad Geometry Thrust Bearings (THRSBR)

- Plain surface
- Multi-groove
- o Step land
- Step pocket
- Tapered land


• Any configurable pad surfaces

Lobe or canted lobe

Tapered land


Multi-recess

- Tapered pocket
- Tilting pad
- Compound taper
- O Any configurable pad surface

Tilting-Pad Journal Bearings (TILTBR)

- Central pivot
- Offset pivot
- Evenly spaced pads
- Grouped pads
- Load between pads
- Load on pad
- Any load direction
- Any preload
- Leading/trailing edges taper
- Fluid-inertia force effects

Rolling-Element Bearin

The ROLLING-ELEMENT bearing module [COBRA] predicts the performance of up to six bearings of different types mounted on a shaft and experiencing radial, thrust and moment loading. Bearing types include:

- Conrad (radial) ball
- Angular contact ball
- Cylindrical roller
- Tapered roller
- Spherical roller

The program allows the evaluation of misalignment, offsets, preload, clearance, or end-play on bearing performance. Bearing preload from spacer grinding or shimming, as well as preload springs is included. Individual bearings can be made to "float". Results include:

- Ball load distribution
- Stress distribution
- Bearing reaction loads & displacements
- System reaction loads & displacements
- Hertz contact stress
- B10 life
- Contact angles
- Spring/stiffness rate

ix ft	BE CONTACT ANGLE BE CAGE LAND RIDING SURFACE PICH DIAMETER PICT OR LAND CLEARANCE CLEARANCE
COBRA	
<u>File Edit RUN Page W</u> inde C:\Users\Public\Documents\Al	
	cation Initial Conditions & Materials Results
	1 EHL Release 1.2 Mineral Oil (72 characters max.)
Shaft Speed	(BPM)
Shaft Rotation Shaft I	otates with respect to Load
Problem Type Loads	are specified vick from list)
Loading Direction(s) radial	X), axial (Z), moment (about Y) 💽 (pick from list)
Loads (applied to the Shaft at syst	
Radial Load along X2000	COBRA
Thrust Load along Z 1000	<u>File E</u> dit <u>R</u> UN <u>P</u> age <u>W</u> indow <u>H</u> elp
Moment Load about Y . 500	System Bearings Lubrication Initial Conditions & Materials Results
☐ Initial Displacement Guesses (usual)	C:\Users\Public\Documents\ARMD58\C0BRA\Sample1.LPT_4/23/2012.6:03:20 Status: CURRENT
along radial X-axis0.003	Results:Sample 1 EHL Release 1.2 Mineral Oil
along axial Z-axis 0.002	Unadjusted System B10 Life (hrs) = 1.241E-03 6 Iterations
tilt about Y-axis 0.001	Adjusted System B10 Life (hrs) = 4.500E-03
	Shaft Speed (rpm) = 1.500E+03
4	FORCES DISPLACEMENTS Radial Thrust Moment Radial Axial Angular
Thrust Load along Z-axis (lbs,	(Along X) (Along Z) (About Y) (Along X) (Along Z) (About Y Appld -2.000E+03 1.000E+03 5.000E+02 [Guess -3.000E-03 2.000E-03 1.000E-0]
Thrust Load along 2-axis (IDS,	Reactn 2.010E+03 -1.007E+03 -4.452E+02 Soln -1.375E-02 1.658E-02 1.931E-0
	Life Adjustment Factors:
	Bearing No. 1 2 3 4 Reliability: 1.000E+00 1.000E+00 1.000E+00 1.000E+00
	Material: 2.200E+00 2.200E+00 2.200E+00 1.370E+00
	Lubrication: 2.333E-01 2.333E-01 2.100E-01 6.000E+00
	Results (shown above) are current w/r/t worksheet data.

Lubricant Module (VIS

The LUBRICANT module [VISCOS] calculate dependent properties of lubricating fluids. Th requires the user to specify lubricant publishe to select them from the built-in lubricant datab

0.35220E+03

Brand Name --> DTE 797 Turbine Oil

0.44359E+02

Kinematic

Viscosity

Centistoke=

(M²/s)*E+6

0.11245E+03

0.98266E+02

0.86276E+02

0.76089E+02

0.83685E-05 0.57699E+02 0.67391E+02 0.31217E+03

0.8577

0.8562

20 10

50

100

VISCOS generates, as a function of temperature, such parameters as:

*** Units of Measure for this Run are --> US (English)

Centinoise=

(Pa-s*1000)

0.96961E+02

0.84583E+02

0.74131E+02

API Gravity [@ 60øF/15.556øC] = 0.32600E+02 ISO Grade Number ->

TABLE WAS GENERATED FOR THE FOLLOWING LUBRICANT

1st Viscosity point (Centistoke) = 0.32000E+02

2nd Viscosity point (Centistoke) = 0.54000E+01

Computed SUS sec.@ 100øF/37.778øC = 0.16509E+03

Absolute - Viscosity

0.94654E-05 0.65261E+02

- Absolute viscosity
- Kinematic viscosity
- Saybolt universal viscosity
- Specific gravity
- Weight density
- Specific heat
- Heat content

Supplier --> MOBIL

Temperature

60.000

64.000

68.000

72.000

76.000

F .

Degrees

<

Thermal conductivity

Last line of problem description

Computed SUS sec.@ 210øF/98.889øC =

(Rens)

Lb-Sec/In^2

0.14063E-04

0.12268E-04

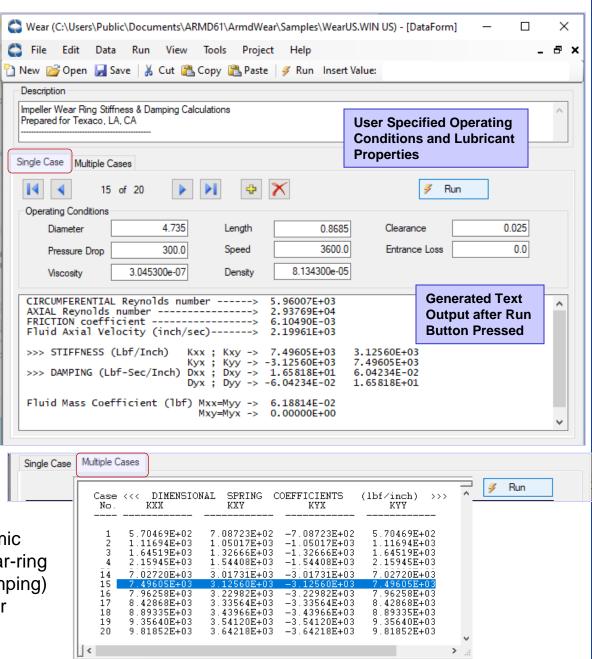
0.10752E-04

1					1	_	Viscosity Dat	а								
l	e	(VI	SL	ĴŪŇ			Description /		e							
-	-	× · –			- /											
\sim	<u>م</u> ر			-1		Sample Problem Number 1. MOBIL DTE 797 OI for 1800 rpm Turbine bearings										
	72] calcula	ates t	emper	ature	;	MOBIL DIE	797 Oil for	1800	pm Turbine bear	ings					
tir	na f	luids. 1	The p	rogran	n		Last line of problem description.									
	0		•	0												
ric	an	t publisl	nea p	ropert	ies o	ſ	Lubricant Product									
lul	oric	cant dat	abas	e.			Supplier	MOE	BIL							
							Brand Na	me DTE	797 1	Furbine Oil						
n	l of															
							Properties			_						
as	:						IS	O Grade 32			API G	iravity		32.6		
							First Ce	ntistoke		32.0 at	104	.0 °F	=			
												×F	-			
) Lubri	cant Library										^ [
				► Insert	🕂 Арр	end	🗙 Delete	돈 Dup	licate							
Γ		Supplier	Bra	andName	ISO Grade	API Gravity	1st Kinematic Viscosity Point	1st Kinema Viscosity Te		2nd Kinematic Viscosity Point	2nd Kinematic Viscosity Temp.	^ t		4.0		
	32	MOBIL	DTE 10 Exc	el Series	68	32.65	68.4		104.0	11.17	212.0			260.0		
	33	MOBIL	DTE 10 Exc		100	29.845	99.8		104.0	13.0	212.0					
	34		DTE 10 Exc		150	29.113	155.6		104.0	17.16	212.0		Help			
	35		DTE 797 Tu		32	32.6	32.0		104.0	5.4	212.0		, tolb	1		
	36		DTE AGMA		30 68	30.6 31.14	43.7		104.0 104.0	6.5	212.0					
	37		DTE Heavy DTE Heavy		68 100	31.14 29.3	65.1 95.1		104.0	ŏ./	212.0					
	38		DTE Heavy DTE Light O		32	34.97	31.0	VISCO	OS H	nas a built-	in lubrican	t				
				Absolute Visc			51.0									
					-			to ret	riev	e lubricant	properties	5.				
			-					The d	ata-	base is us	er-friendly		Ab	s. Vis. (Rens)		
Engl	ish)			を 山 0.1500	A		with capabilities for users to add									
					A A			and d	elet	e records a	as they wis	sh.				
7 т.	rbir	e Oil		0.1000 UNC UNC UNC UNC UNC UNC UNC UNC UNC UNC												
ISC) Gra	de Number ->		0.0500			AAAAAA	<u></u>								
@ 1 @ 1	emp. emp.	(øF) = 0.10 (øF) = 0.21	400E+03 200E+03	0 0000					<u> </u>	$\Delta \Delta \Delta \Delta \Delta \Delta \Delta$		À A A		<u> </u>		
			50			100	Lubrica	ant Ter	150 nperature (Degree		00		250			
				C:\Users\Publ	lic\Docume	nts\ARMD	61\Viscosity\VIS				*					
	Comb	-14			<u></u>											
	Sayb Inive:	oit Spe rsal Gra	cific vity	90									Al	bs. Vis. (C-P)		
V	Vienerity (Cr. (C^2)) = 80															
			8623	€ 60 50	~	4										
0.	4543	9E+03 0.	8623 8608 8592	270 560 410 0 0 20 20 20												

150

Lubricant Temperature (Degrees F)

200

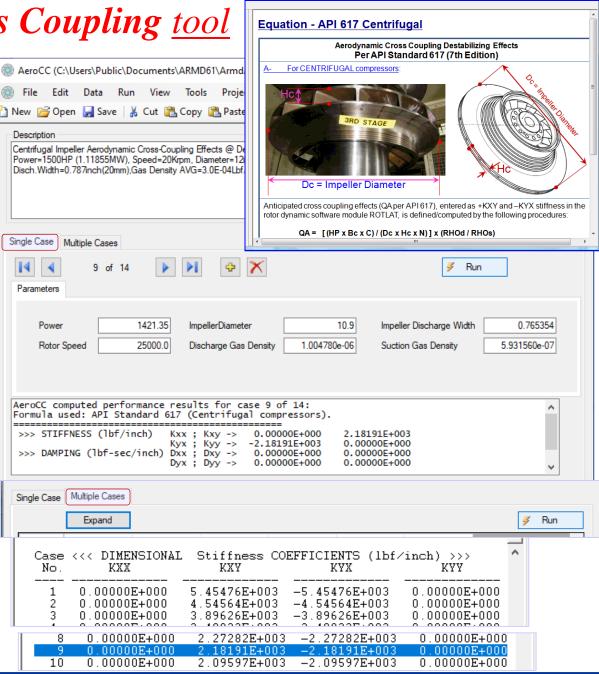

Wear-Rings tool

ArmdWear is an ARMD utility for computing wear-ring/seal performance properties including dynamic coefficients (stiffness and damping) of incompressible fluids such as those found in boiler feed pumps.

The computation is based on Black and Jenssen "Effect of High Pressure Ring Seals on Pump Rotor Vibrations". The simulation in ArmdWear can be performed for a single point of operation or as a function of operating parameters such as Diameter, Length, Clearance, Pressure Drop, Speed, Fluid Viscosity or Density.

Wear-ring input data files can also be linked to ARMD rotor

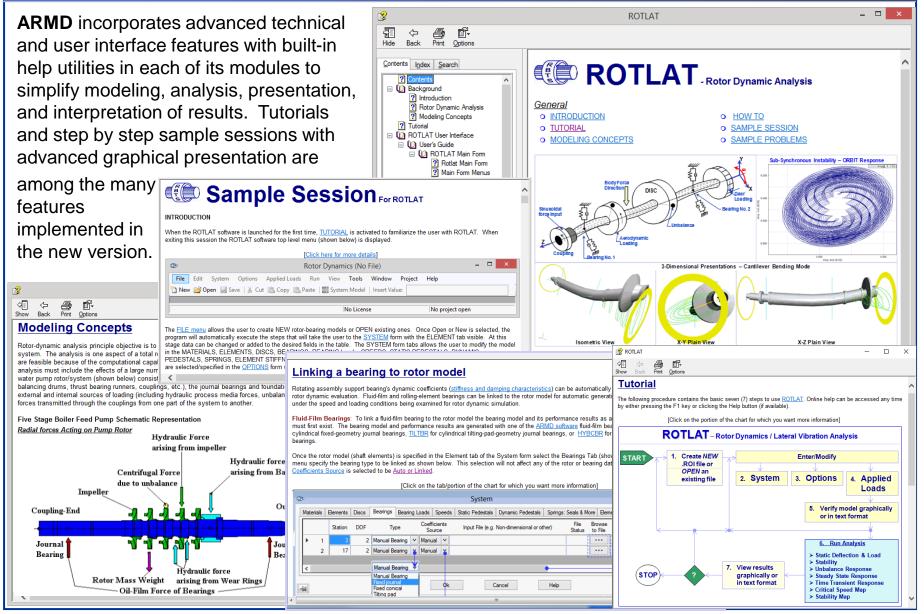
models developed in the rotor dynamic package ROTLAT, for automatic wear-ring dynamic coefficients (stiffness & camping) calculations and inclusion in the rotor dynamic simulations.


Aerodynamic Cross Coupling tool

ArmdAeroCC is an ARMD utility for computing gas compressor Aerodynamic Cross Coupling Destabilizing Effects. The computation can be based on one of the following:

A- API 617 for centrifugal impeller.B- API 617 for axial flow rotor.C- ALFORD's equation.D- WACHEL's equation.

The simulation can be performed for a single point of operation or as a function of input parameters such as power, impeller diameter, impeller discharge clearance, ratio of discharge to suction densities, etc.


Created input data files can be linked to ARMD rotor models developed in the rotor dynamic package ROTLAT, for automatic aerodynamic cross-coupling coefficients calculations and destabilizing effects inclusion in the rotor dynamic simulations.

ARMD Documentation

ARMD package is supplied with a printed quick start manual that covers installation, sample cases, features, and capabilities. The package also has a comprehensive electronic user's manual that includes the following sections:

ARMD™	Introduction, Set-up, Installation and Operation	Brochure	Manual	
ROTLAT™	Rotor Dynamics Lateral Vibration	Overview	Manual	Samples
TORSION™	Torsional Vibration	Overview	Manual	Samples
JURNBR™	Cylindrical Fluid-Film Fixed Geometry Journal Bearings	Overview	Manual	Samples
HYBCBR™	Conical Fluid-Film Fixed Geometry Journal Bearings	Overview	Manual	Samples
TILTBR™	Fluid-Film Tilting-Pad Geometry Journal Bearings	Overview	Manual	Samples
THRSBR™	Fluid-Film Fixed and Tilting- Pad Geometry Journal Bearings	Overview	Manual	Samples
COBRA™	Rolling-Element Bearings	Overview	Manual	Samples
VISCOS™	Lubricant Temperature Dependent Properties	Overview	Manual	Samples

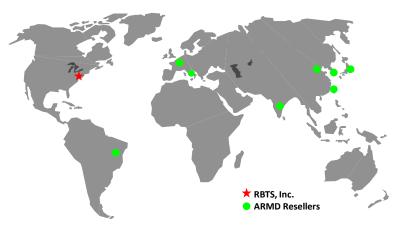
Purchasing Options

ARMD is constructed from various solution modules. It can be tailored to suit your needs and budget. You may purchase any combination of programs or all if you wish. Licensing is available as a single seat or multi-seat network configuration.

With your purchase, the package includes the software (CD or download), quick start manual, electronic user's manual, technology transfer and training session (optional), updates, maintenance, and support.

System Requirements

Microsoft Windows 10, 11 or higher (32 or 64 bit).


Remember, with RBTS, you get

more than just the software, you get the company with more than 50 years of experience in the areas of tribology and machinery dynamics.

The Worldwide Leading Software For Rotating Machinery Analysis

Advanced Rotating Machinery Dynamics

RBTS' software has gained international reputation for its:

Technical Capabilities
 User Friendliness

- Completeness
- Support & Service

YOUR PARTNER for Europe & Middle East & Africa

Support for other countries on request.

- Customer Engineering Support (Rotor Dynamics & Torsional Vibrations)
 - ARMD Software Support
- Training Courses & Seminars

Please contact: Dr. Andreas Laschet

Laschet Consulting GmbH

Friedrich-Ebert-Str. 75 · D-51429 Bergisch Gladbach · GERMANY

Phone: +49 2204 84-2630 · E-mail: info@laschet.com · www.laschet.com

