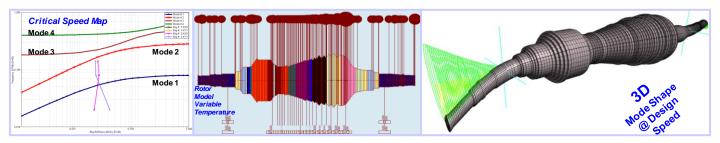

Advanced New Release ROTLA Rotating **M**achinery Version 6 **D**ynamics Rotor Dynamics – Rotor/Bearings/Supports Lateral Vibration Analysis ROTOR Stability Unbalance **Steady State** Time **Critical Speed** Analysis Response Response Transient & Stability **DYNAMICS** (ROSTAB) (ROSYNC) (ROSSRP) Response Maps (ROTLAT) (ROTORMAP) (RORESP) ARMD for Windows 6.2 \times Peak-to-Peak **Amplitude of** Vibration as a **Advanced Rotating Machinery Dynamics** function of Speed Dynamic Analysis Torsional Vibration **Coupling-End Bearing at Instability Threshold** Bearing Analysis ORBIT Conical Rolling loumal Tilt-Pad Tools Amp linch (E-82) Squeeze Film Lubricant Aerodynamic Properties Ćoupling Dampe Vibratory Displacements at MAX Load/Speed 2D Plots 3D Rearing 3D Shaft

Right-click for help. Grayed-out buttons are not installed. Copyright © 1986, 2023 RBTS Inc.



Please contact **Dr. Andreas Laschet** as RBTS' consultant and representation for the regions **Europe, Middle East, Africa** with the following communication details:

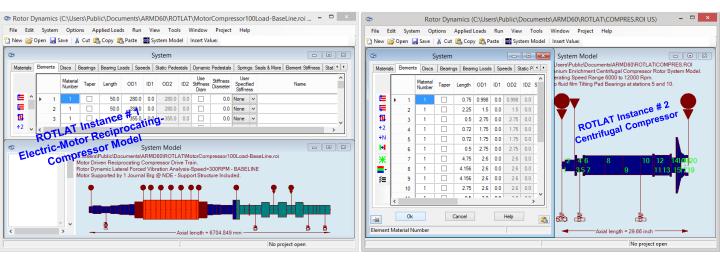
Laschet Consulting GmbH · Friedrich-Ebert-Str. 75 · 51429 Bergisch Gladbach · GERMANY Phone: +49 2204 84-2630 · E-mail: info@laschet.com · Web: www.laschet.com

The rotor dynamics lateral vibration analysis package uses a finite-element based formulation, for performing damped and undamped **natural frequencies**, **mode shapes** and **stability** (ROSTAB & ROTORMAP), **synchronous unbalance response** (ROSYNC), **steady-state response** (ROSSRP), and **non-synchronous time-transient response** (RORESP) of rotating machinery. The five sub-modules are integrated by ROTLAT's user interface. The user interface controls the sub-modules to provide a complete rotor/bearing system dynamic analysis environment integrating the rotating assembly with its support bearings, wear-rings, seals, aerodynamic effects, support structural flexibilities, etc.

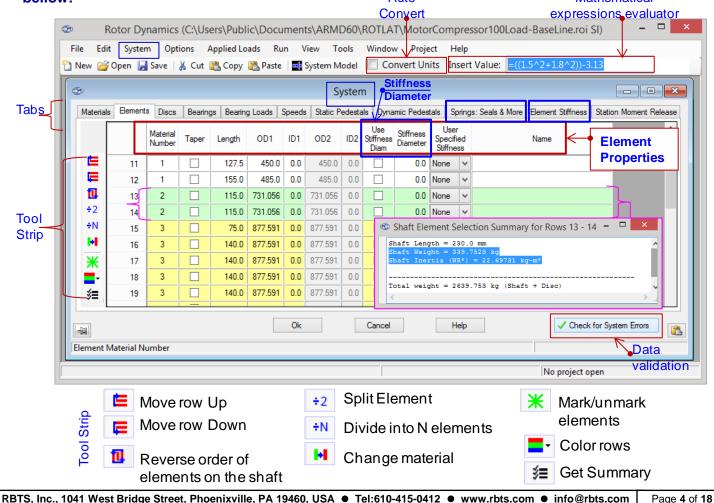
ROTLAT incorporates advanced modeling features and capabilities including the following:

- Rotor of various configurations: Solid, Hollow, Tapered & Stepped.
- Shaft material damping.
- Gyroscopic effects (discs with angular degrees of freedom).
- Element geometry, stiffness diameter, or element stiffness.
- Bearings of all types: Cylindrical, Conical, Tilting Pad & Rolling Element.
- Bearing models linked to rotating assembly at any station.
- Bearings vertical elevation for accurate bearings load computation.
- Springs: wear-rings, seals, aero-dynamic effects, squeeze-film dampers, etc.
- Springs models linked to rotating assembly at any station.
- Bearings support systems; casing and foundations.
- Static foundation/pedestal flexibility (mass, stiffness and damping).
- > Dynamic (frequency dependent) foundation/pedestal flexibility.
- Discs: couplings, impellers, sleeves, etc.
- Moment release (pin-joint) at shaft stations.
- Multiple unbalance forces at any location and phase orientation along the shaft.
- External excitations and body forces: sinusoidal, step, ramp and pulse type functions.
- The release of RBTS' **ARMD Version 6 Rotor Dynamics** is a major milestone in the product's development history, rolling out a **completely new and improved** graphical user interface for the package with enhanced numerical capabilities and analysis features. The software's front end was redesigned with our customers' and industry's input to incorporate the most logical, efficient, and productive techniques to model and analyze complex rotor/bearing systems for lateral vibrations.

ARMD ROTLAT users will immediately see the improvements as element, shaft, and system data are presented in a flatter format, with key fields and analysis options readily visible and accessible from the main data entry screens. Engineering productivity to design models is vastly improved as shafts and systems can be easily imported from usergenerated component template models. Furthermore, the ability to simultaneously run multiple instances of the program permits rapid side-by-side comparison of results.

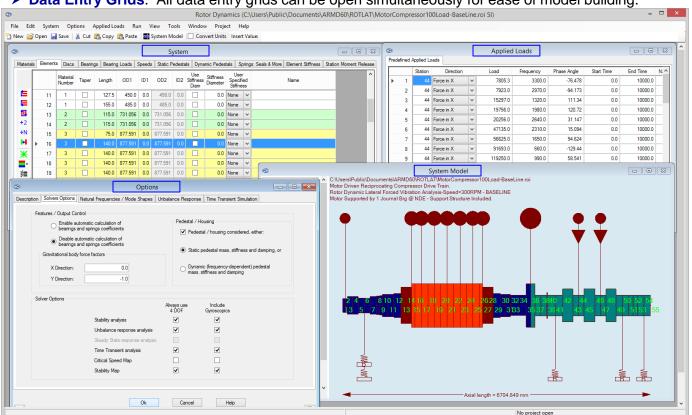

By identifying new trends from industry standards, along with RBTS' involvement in turbomachinery standards revisions, new technical features were added to the software. Addition of equivalent element stiffness diameters, user specified stiffness for such elements as flexible coupling or disk plate, expanded user-defined forces application, better access to temperature dependent properties, seamless integration of modeled bearings and springs (such as wear-rings, seals, aerodynamic effects, squeeze-film dampers, etc.) all combine to provide more accurate modeling and better matching of analysis results to actual system empirical results.

New Enhanced Modeling, Usability and Technical Features:


Improved TAB layout. Redesigned for more direct and faster access to data input locations and results. Important functionality is brought forward into the TAB structure, thereby eliminating the need to select from drop down or pop-up menu lists.

)								Syst	em										
Material	ls Element	s Discs	Bearing	gs Bear	ing Loads	Speed	ds Static	: Pede	stals [)ynamic Pe	edestals	Sprin	ngs: Seals & More	Elen	ent Stiffness	s Station	n Moment I	Release	ļ
		Material Number	Taper	Length	OD1	ID1	OD2	ID2	Use Stiffness Diam	Stiffness Diameter	User Specifi Stiffne	ied	1	lame				^	
	49	1		18.7	250.0	0.0	250.0	0.0		0.0	None	~							
1	50	9		7.9	257.8	0.0	257.8	0.0		0.0	None	~							
11	51	9		15.9	281.7	0.0	281.7	0.0		0.0	None	~							
÷2 ÷N	0	D							0	ptions									
		escriptio	n Solve	ers Optio	ons Nat	tural Fr	equencie	es / N	Node Sh	apes (Jnbalan	ce / s	Steady State Re	espon	se Time '	Transien	t Simulati	on	
*													,						
≸≡ F	Row C	-0	otput Op	cles/Mir	nute		DanLog	• •	Ratio rement				te natural freque damping ratio is			shapes	where 0.0		
							Арр	lied	Loads	5						[
define	ed Applied L	oads																	
	Station	D	irection		Load		Frequen	су	Phas	e Angle	Star	rt Time	e End Tim	e	Name			^	٦
14	44	Force in	۱Y	~	217	79.3	23	310.0		76.776			0.0 100	0.00	Compresso	r Throw	3 Y 5th Ha	m.	
15	5 44	Force in	۱Y	~	389	91.9	26	640.0		-66.54			0.0 100	0.00	Compresso	r Throw	3 Y <mark>6</mark> th Ha	m.	
16	5 44	Force in	۱Y	~	516	53.3	19	0.086		48.908			0.0 100	0.00	Compresso	r Throw	3 Y 7th Ha	m. 🗸	
	-					1			1		1							>	
8]						Ok			Can	cel		H	elp					P	5
aft stat	tion numb	er																	

Multiple instances of ROTLAT. The newly developed package can now open simultaneously multiple instances of ROTLAT, so modeled shaft and components can be moved easily between different system models to allow fast, side-by-side comparison of model variations and analysis results. This functionality permits multiple instances of ROTLAT Version 6 or Version 5.8 to be accessible on your screens.


Many of the improvements incorporated into the ARMD ROTLAT Version 6 are specifically directed towards simplicity, increasing usability and increasing productivity as illustrated bellow: Auto Mathematical

- Evaluate Mathematical Expressions. When entering data to cells, data entry field has the ability to evaluate mathematical expressions, without having to launch a calculator app.
- Whole Number. Display for improved legibility, defaulting to scientific notation when required.
- Auto Convert Units. Automatically computes the units conversion when modeling a system with different components using mixed SI and English units. Example: You have a few inch dimensions to enter amongst hundreds of mm values, just check the box for auto conversion.
- Automatic Cell Validation. Performed at data entry time. The program now reviews data grids for incomplete, invalid, or nonsensical entries, providing an error flag and correction recommendation. This applies to mass-elastic data fields, user defined torques, and required solver data inputs.
- Data validation error diagnostics quickly walks user through any model input errors. A mouse click navigates the user to the next error found.
- Row Tagging. Row marking/tagging for quick identification and rapid recall, advantageous for multishaft systems with very large numbers of elements.
- Round Function. Round function for data entry fields. is accessible from the Tools menu, and can be declared for all data fields.

	~	Ena	able Units Conversion from Expression Evaluator
1		Ena	able Rounding Button
		Set	Rounding Precision

Tool Strip/Bar and Buttons. Replaces hidden right-click menus to provide enhanced visibility of functions and features.

Data Entry Grids. All data entry grids can be open simultaneously for ease of model building.

RBTS, Inc., 1041 West Bridge Street, Phoenixville, PA 19460, USA • Tel:610-415-0412 • www.rbts.com • info@rbts.com Page 5 of 18

- Data Entry Menus. All data entry menus are visible at the Grid Input page. Grids now feature selection check boxes and editing buttons where appropriate.
- Shaft Material Temperature. Material operating temperature is readily input and enabled, to capture the temperature dependent material properties and their effect upon rotating assembly dynamic characteristics. Particularly useful for shafts in high temperature applications like steam turbines, rolling mills or extruders.

						•	aterial			Mate	
Þ				S	ystem	Te	mperatu	ire		Libra	
Materials	Elements Discs	Bearings Bear	ing Loads Speed	ls Static F	edestals	ynami	c Pedestals	Spr	rings: Seals & More	Element Stiffness	Station Noment Rele
	Young's Modulus	Shear Modulus	Density	Use Operating Temp	Operati Tempera		Damping Factor			Name	Get Values From Library
1	199950.0	79290.0	7833.4			0.0	(0.0	Steel		
2	199950.0	79290.0	3519.2			0.0	(0.0	Motor Core Ends		
▶ 3	199950.0	79290.0	2442.1	✓		100.0	(0.0	Motor Core		
4	199950.0	79290.0	7833.4			0.0	(0.0	Compressor Steel		
[a]			Ok		Car	ncel		He	elp	✓ Check	for System Errors
aterial Yo	ung's Modulus of	Elasticity								N/mm ²	

- Stiffness Diameter can be used to enter the equivalent mass-elastic properties of complex shaft sections, motor lamination stacks, shrunk on disks, etc. When selected, stiffness diameter is used to compute element stiffness while element geometry is used for computing element weight and inertia properties.
- Discs & Disc Calculator. Discs representing concentrated mass with/without inertia properties can be located at any station along the shafting system. A disc calculator is implemented in ROTLAT to compute weight, polar and transverse moments of inertia for user defined single or multiple disc geometries. Calculated weight and inertia properties are automatically placed in the appropriate cells in the Discs form.

œ								Syste	em							
Materials	Elements	Discs	Bearings	Be	aring) Loads	Speeds	Static Pedea	stals	Dynamic F	Pedestals	Springs: S	Seals & More	Element Stiffness	Station Mor	ment Release
		Station	Weigh	nt		Polar N of In		Transverse	l	Inbalance	F	Phase		Disc Name	e	
	1	1		7	.5		14.4	12.	5	().0	0.0	Coupling			
	2	20		0	в			Disc Weight	t, Inerti	a and Tra	nsverse M	oment Calc	ulator	- • ×		
~	_		_				Length	OD1	ID1		OD2	ID2	Density	Axial Offset		
[1]						1	2.0	4.0		2.0	0.0	0.0	0.283	0.0	for System I	Errors
					۰.	2	0.1	6.0		2.0	0.0	0.0	0.283	0.0	-	Errors
Disc	Calcul	ator Bu	>		Res	US () ults	SI Weight 2.015	227	0.0 Polar Ine 3.	1	Coupling	rse Inertia 28.14219	Center of Gra	avity Offset 1176e-01		
								Load Table		d Density from e Table Can	Material Llbra	·	alculate			
BTS, Inc.,	1041 W	est Brid	dge Stree	et, I	Pho	enixv	ille, PA	19460, US	Α •	Tel:610)-415-04	12 • w	ww.rbts.c	om • info@	rbts.com	Page 6 of 1

Bearings can be located at any station along the shafting system. Bearings are the fundamental elements supporting the rotating assembly, and any internally generated or externally applied forces and moments. Their dynamic properties (stiffness and damping coefficients) can be manually specified or automatically generated when bearing models are linked to specified stations on the rotating assembly.

Ð								S	ystem									
Mate	erials	Elements	Discs	Bearings E	Bearing L	oads	Speed	Is Static P	edestals	Dynamic	Ped	estals	Springs:	Seals & N	lore Elen	nent Sti	ffness Stati	on Moment Release
		Station	DOF	Туре	e		cients urce	Input	File (e.g.	Non-dimen	sion	al or othe	er)	File Status	Browse to File	Edit File	Bearing Coefficients	Bevation
►	1	3	2	Fixed journal	i v	Auto	~	Pinion01As	Designe	dPressureD	amE	Bearing-M	100V	Found			Edit	0.0
	2	17	2	Fixed journal	il 👗	Auto	¥	Pinion01As	Designe	dPressureD	amE	Bearing-M	100V	Found			Edit	0.0
<	ig Stat	tion Numl	ber	Manual Bea Manual Bea Fixed journa Fixed conica Fixed conica Tilting pad Rolling Elem	aring al al		Ok	:	(Cancel			Help				Right Check for S	vstem Errors
						Manu	al V	*						-				
						Manu Auto			Sta	tic Pedesta	I	Dynami	c Pedest		ting Pad Inertia		De	scription
						Linke	d		None)	~	None		¥	0.0	D		
									None		۷	None		¥	0.0	D		
								Ł,										

Typically, a bearing has two degrees-of-freedom (X and Y directions, Z being the rotational axis) which is the default setting. ROTLAT can accommodate any number of degrees-of-freedom such as **4x4** for bearings with moment stiffness (Rolling-Element bearings or Thrust bearings). Similarly, for Tilting-Pad bearings where pad pitch degree-of-freedom are to be considered (full stiffness and damping coefficients **NxN**) the size is set to 2 + number-of-pads).

Bearings Loads. Bearing applied loads due to rotating assembly dead weight and/or externally applied forces and moments on the rotating assembly, can be automatically calculated or manually specified in the form. To automatically calculate bearing applied loads simply press the calculator button on the left side of the form.

Ð				System				
Materials	Elements Disc	s Bearings E	Bearing Loads Sp	eeds Static Pedestals	Dynamic Pedestals	Springs: Seals & More	Element Stiffness	Station Moment Release
		Bearing 1 Load	Bearing 2 Load					^
	Speed 5	87.43	83.4					
	Speed 6	99.78	94.32					
↑ [Speed 7	99.78	94.32					
	Speed 8	113.32	106.28					
	aring Loads			Ok C	ancel	Help	✓ Check	c for System Errors

Bearing load calculations may-or-may-not consider dead weight load and externally applied forces/moments, but also will take **bearing elevation** into account to properly compute bearings load magnitudes and directions for each of the bearings supporting the rotating assembly. Bearings **Elevations** are influential when indeterminate supports are considered with three or more bearings such as those installed in multi-rotor power generating units.

Speed Cases. Many speed cases can be considered in rotor dynamic evaluation with ROTLAT. Speed cases entry and bearing dynamic coefficients viewing are designed for efficiency with copy and deep duplicate functions (all linked values are duplicated).

8									Sy	stem							
Mat	terials	Elemen	nts Discs	Bea	rings	Beari	ng Lo	oads Sp	eeds Static Pede	estals Dynamic Pe	ed	estals	Springs: S	eals & More	Elemen	t Stiffness	Station Moment Release
	En	ter/Edit	Speeds:		Τ			Dynamio	: Coefficients S	elector			Current (Coefficients	atSel	ected Sp	eed and Location
			Speed	^				Station	Туре	Coefficients ^		Stiffne	ss Matrix:		Be	earing Load	l: 122.0 lbf
		9	18000.0				1	3	Fixed journal	Auto				x	3	/	
	1	0	18600.0			ľ	2	17	Fixed journal	Auto		•	Kx	75606.37	1	22947.0	
	1	1	18800.0				2		rixed journal	Auto			Ky	-564232.4	8	5345.52	
L	1	2	19000.0														
Þ	1	3	19200.0						7			Dampir	ng Matrix:	Edit Coeffci	ients	Updat	e All Auto Coefficients
L	1	4	19400.0	*	Cut		-	trl+X					ig mante.				Coefficients
L	1	5	19600.0		Сор	-		trl+C						x	3		automatically updated
	1	6	19800.0	<u>『</u> 公	Past Clea		C	trl+V					Dx	111.4341		47.1215	for linked bearings
	1	7	20000.0						-				Dy	-43.68232	5	88.1042	when button is pressed
				Ŧ		ert Row	~	F3									
)]				↔ ~		end Row ete Row	/ Ct	rl+F3 F4	Ok	Cancel			Help			🗸 Che	ck for System Errors
ee	d			× E		olicate Ro	w	F5							R	PM	

Static Pedestal. Bearings support flexibility such as bearing housing, support structure, etc. can be considered in ROTLAT. These dynamic coefficients are normally defined in the horizontal X-direction and vertical Y-direction with their mass, stiffness and damping characteristics. Any defined static pedestal properties can be linked to any bearing in the system. ROTLAT not only accommodates these coefficients but also can accommodate cross-coupled coefficients as shown.

œ								5	System									
Ν	Materia	ials E	Elements D	liscs	Bearings	Bearing Loads	Speeds	Static Pe	edestals Dy	namic Pedest	als Sp	rings: Seals & Mo	re Elen	nent Stiffness	Station Moment	t Release		
			Use Cross Coupling	Weig	ght X	Weight Y	Stiffnes	s X	Stiffness Y	Dampir	ng X	Damping Y		[Description			
	•	1			50.0	50.0	1000	0.000	100000	.0	0.0	0.0	NDE					
Ц		2			100.0	100.0	2 00000		2 UUUUUU®*1	ne l	0.0	0.0	DE					
<	20									System								• ×
[Mat	terials	Elements	Discs	Bearing	s Bearing Loads	Speeds	Static	Pedestals	Dynamic Ped	estals	Springs: Seals &	More E	lement Stiffne	ss Station Mom	ent Release		
Γ			Use Cross Coupling		/eight X	Weight Y	Stiffne	ess XX	Stffness 3	XY Stiffn	ess YX	Stiffness YY	Da	mping XX	Damping XY	Damping YX	Damping YY	
		1	•		50.0	50.0	10	0.00000		0.0	0.0	100000	.0	0.0	0.0	0.0	0.0	NDE
	1	2	v		100.0	100.0	2.0000)00e+06		0.0	0.0	2.00000e+0)6	0.0	0.0	0.0	0.0	DE
	<											-						>
									Ok	(Cancel	ł	Help		✓ Cheo	ck for System Erro	rs	2

Dynamic Pedestal. Similar to the static pedestal mentioned above, the dynamic pedestal defines the dynamic coefficients as a function of frequency bands calculated or measured in the field.

0					Pedes	tal / Housing	Dynamic (fre	equency-dep	endent) Infor	mation for Pe	edestal 1			- 🗆 🗙
[Minimum Frequency	Maximum Frequency	Weight X	Weight Y	Stiffness XX	Stiffness XY	Stiffness YX	Stiffness YY	Damping XX	Damping XY	Damping YX	Damping YY	Description
	1	0.0	1000.0	100.0	100.0	500000.0	0.0	0.0	500000.0	0.0	0.0	0.0	0.0	
	2	1000.0	2000.0	100.0	100.0	500000.0	0.0	0.0	500000.0	0.0	0.0	0.0	0.0	
	▶ 3	2000.0	3000.0	100.0	100.0	500000.0	0.0	0.0	500000.0	0.0	0.0	0.0	0.0	
	4	3000.0	4000.0	100.0	100.0	500000.0	0.0	0.0	500000.0	0.0	0.0	0.0	0.0	
	5	4000.0	5000.0	100.0	100.0	500000.0	0.0	0.0	500000.0	0.0	0.0	0.0	0.0	
Lo	wer limit	of fre 📝 Cross Co	upling Enabled									CPM		

Page 8 of 18

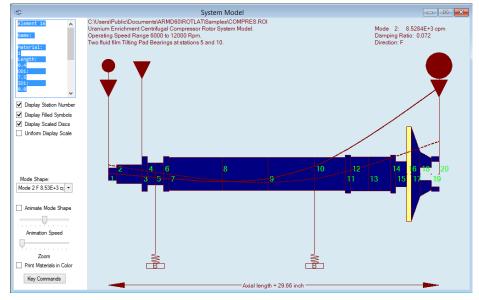
RBTS, Inc., 1041 West Bridge Street, Phoenixville, PA 19460, USA • Tel:610-415-0412 • www.rbts.com • info@rbts.com

Springs. Provides the means to introduce dynamic characteristics (stiffness and/or damping coefficients similar to bearings) affecting the rotating assembly. This option permits the user to specify dynamic effects such as those arising from Seals, Wear-rings, Impeller Aero-Dynamics, Impeller Hydraulics, Steam Whirl effects, etc. that may be stabilizing or destabilizing forces on the rotating assembly. Their dynamic properties (stiffness and damping coefficients) can be manually specified or for some elements (shown below) automatically generated when these elements are linked to specified stations on the rotating assembly.

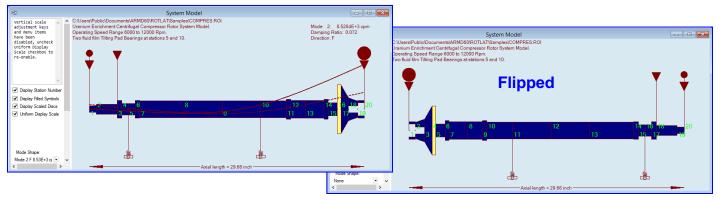
þ							System							
Mat	erials	Elements	Discs Bearin	igs	Bearing	Load	s Speeds Static Pedestals Dynamic Pedestal	s Springs	Seals & N	lore E	lement Stiffnes:	s Station M	oment Release	e
	Da	ata enti	ry form for S	Spr	ings: \	Nea	ar-rings, Aerodynamic Cross Coupl	ings, Ma	gnetic	Pulls	and other	stiffness	s / dampin	g locations
		Station	Туре		Coeffici Sour		Input File		Browse to File	Edit File	Coefficients	Wear-ring Pressure Drop		Description
	4	9	Wear-ring	Y	Auto	~	MultiStagrPumpImpellersWearRing-M00.win	Found			Edit	Edit	Stage #4	
	5	11	Wear-ring	Y	Auto	~	MultiStagrPumpImpellersWearRing-M00.win	Found	••••		Edit	Edit	Stage # 5	
	6	13	Wear-ring	Y	Auto	~	MultiStagrPumpImpellersWearRing-M00.win	Found	•••		Edit	Edit	Stage # 6	
	7	15	Wear-ring	Y	Auto	~	MultiStagrPumpImpellersWearRing-M00.win	Found			Edit	Edit	Stage # 7	
۲	8	57	Wear-ring	¥	Auto	¥	MultiStagrPumpImpellersWearRing-M00.win	Found			Edit	Edit	Stage # 8	
	9	59	Maardaa		Auto	¥	MultiStagrPumpImpellersWearRing-M00.win	Found			Edit	Edit	Stage # 9	
	10	61	Wear-ring	•	Auto	¥	MultiStagrPumpImpellersWearRing-M00.win	Found	•••		Edit	Edit	Stage # 10	
<			User Specified Wear-ring					,	Ľ J		i			>
al			Aerodynamic Squeeze Film				Ok Cancel		Help		[Check for	r System Errors	3
	n Num	nber			Auto Manual	V								
_				_	Auto Linked									

Element Stiffness. The element stiffness feature (matrix tab shown below) permits user specification of elements stiffness matrices to be utilized in the shaft element form instead of being computed internally by the solvers from the specified element geometry. This feature allows the specification of element stiffness matrix for such elements as coupling, coupling connections, plate elements, discs, or any other flexible connection along the shafting system.

						Axisvmme	etric Non-t	apered Ele	ment	
	_ X	αχ	Y	αγ _		X	αχ	Ý	αγ	 User Specified Element Stiffness Matrix
x	1,1	1,2	1,3	1,4	x	$\frac{12EI}{L^3}$	$\frac{6EI}{L^2}$	$-\frac{12EI}{L^3}$	$\frac{6EI}{L^2}$	Kxxx Kxxxx 1.452900e+07 1.452900e+07 Kaxaxx Kaxaxx
αχ	2,1	2,2	2,3	2,4	αχ	$\frac{6EI}{L^2}$	$\frac{4EI}{L}$	$-\frac{6EI}{L^2}$	$\frac{2EI}{L}$	3.004100e+07 -1.551200e+07 Edit the values above to produce the effective stiffness matrix shown below: x ax y ay
Y	3,1	3,2	3,3	3,4	Y	$-\frac{12EI}{L^3}$	$-\frac{6EI}{L^2}$	$\frac{12EI}{L^3}$	$-\frac{6EI}{L^2}$	x 2.905900e+07 1.452900e+07 2.905900e+07 1.452900e+07 αx 1.452900e+07 3.004100e+07 -1.452900e+07 -1.551200e+07 y -2.905900e+07 -1.452900e+07 2.905900e+07 -1.452900e+07 αxy 1.452900e+07 -1.452900e+07 2.905900e+07 -1.452900e+07 αy 1.452900e+07 -1.551200e+07 3.004100e+07 3.004100e+07
αγ	4,1	4,2	4,3	4,4	αγ	$\frac{6EI}{L^2}$	$\frac{2EI}{L}$	$-\frac{6EI}{L^2}$	$\frac{4EI}{L}$	αy 1.452300e407 -1.551200e407 -1.452300e407 3.004100e407


Station Moment Release. The station moment release permits specification of stations along the shafting system not to transmit moment forces across the station while transmitting full shear forces. This option lends itself to readily define a station reflecting shaft connections at universal joints,

				n			
Materials Elem	ements Discs	Bearings Bearing Loads Speeds	Static Pedestals	Dynamic Pedestals	Springs: Seals & More	Element Stiffness	Station Moment Release
	Station	Name					
▶ 1	6	Flexible Connection					


RBTS, Inc., 1041 West Bridge Street, Phoenixville, PA 19460, USA • Tel:610-415-0412 • www.rbts.com • info@rbts.com Page 9 of 18

> 2-D GRAPHICS MODEL.

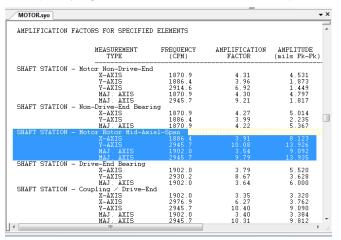
Real-time graphics update of the 2-D image corresponding to numeric data input in data grids provides visual confirmation of model correctness while building system models.

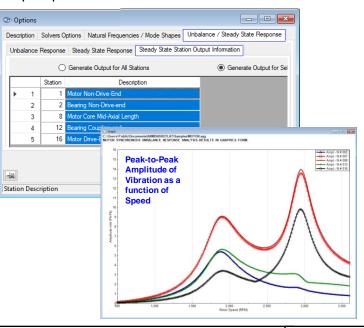
2-D Model auto resizing gives user the option to "fit-to-page" complete model. User can automatically view the model with the correct aspect ratio (Uniform Display Scale, shown below), thereby permitting rapid, visual model review. Shaft models can be **flipped from left** to right with a single button click.

Interrogate an element in the 2-D Model Viewer to see all defining element data in a side-bar data window.

Element selection with control keys within the 2-D model viewer permits easy identification of particular cells within large models. This is useful for models with closely spaced thin elements.

Rotated view option for copying the 2-D model graphic to the clipboard.

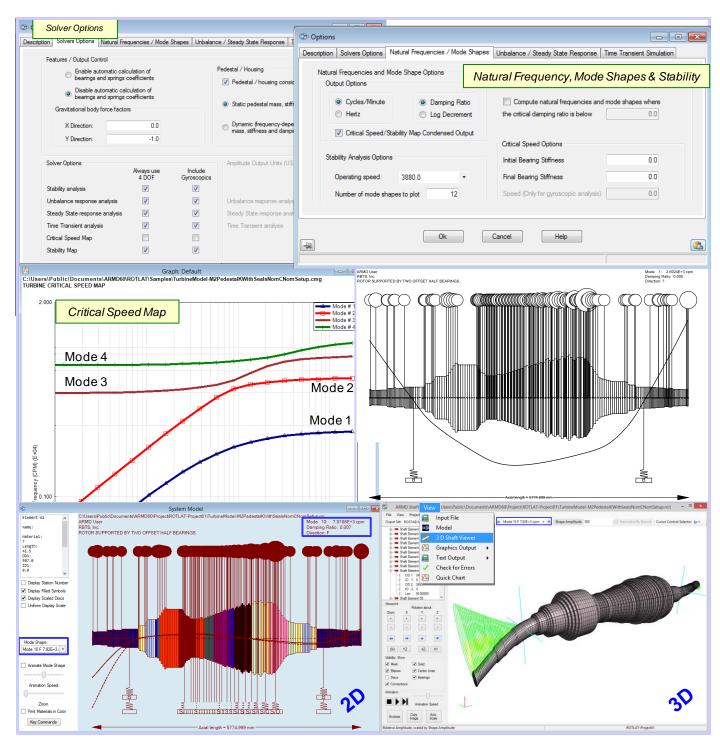

Metafile enabled copy and paste of system models and graphics for better report graphics.

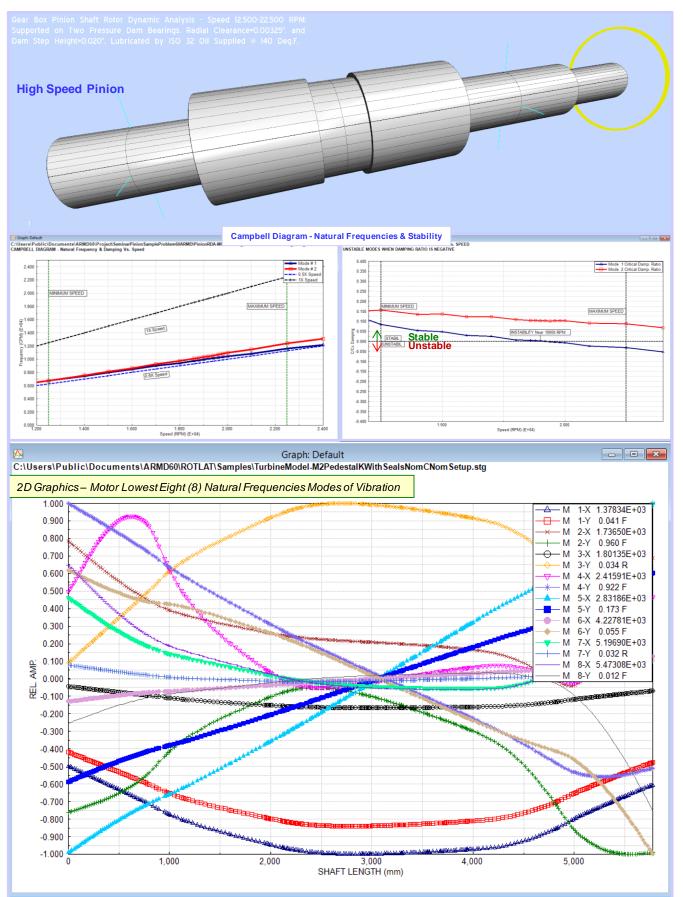

Tool panel has been added on the 2-D display window for enhanced graphics control and better visibility of display options.

- Text Output Viewer. User selectable text output viewer that can be Word, Open Office Writer, Notepad, WordPad, or any other program which accepts text file input. Settings are specified in the ARMD Settings form from the help menu.
- One-click Quick Chart. This feature rapidly displays an X-Y graph of entered tabular data for visual verification of correctness. ARMD Graph software is still available for complete graphic analysis capabilities
- Selectable Output Units. Selectable Frequency Units between CPM or Hz, in accordance with the user's preference, or the industry standard format, can be set simply by checking a box in the options form. Also damping parameter (Damping Ratio or Log. Dec.) can be selected.
- Damped Modes. Users may eliminate graphical presentation of highly damped modes by simply checking a box and specifying damping ratio threshold.

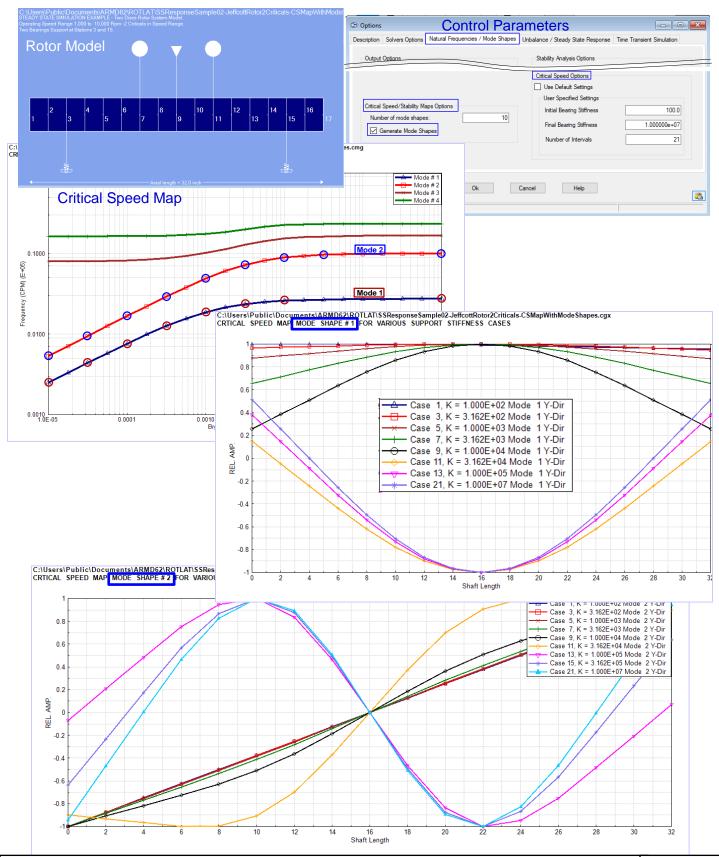
1			ARMD	Settings		-		×	
Genera	2 DOF Layout	Recent Lists	Grid & Ma	aterial Colors	Model Colors and	l Fonts	Advar	nced	
	Application max				ys save data on so grids during data e		1		
f	Text Viewer								
	 WordPad Text Viewer Path 	:	NotePad		Other				
	C\Program Files (x86)\TextPad 5\TextPad.exe Browse								
	Preferred units	ustomary/Englis	sh	0	SI/Metric				
	Preferred frequency units Cycles / min (CPM) Hertz (Hz) Preferred damping output units (Rotordynamics graphics only) Critical Damping Ratio Log Decrement								
	Restore Defaults Restore a	Il settings to def	fault.	Restore	e Defaults				
B Options								- 0	×
Description Solver	s Options Natural Fre	equencies / Mode	Shapes Ur	nbalance / Stea	dy State Response	Time Trar	nsient Si	mulation	
Natural Freque	ncies and Mode Shap ons	e Options							
• Cycl	es/Minute	Damping Ration	•	Compute na	atural frequencies and	mode sh	apes wh	iere	
O Hert	Z	O Log Decreme	nt	the critical damp	ping ratio is below		0	.9	
Critic	al Speed/Stability Ma	p Condensed Outp		Critical Speed C	otions			_	
Stability Ana	lysis Options			Initial Bearing S		1.00	0000e+(07	
Operating speed: 25000.0 💌			1	Final Bearing St			0000e+1		
Number	of mode shapes to plo	Speed (Only for	gyroscopic analysis)		0	0.0			
		Ok	Car	ncel	Help				(

- Critical Speed Map Options. Minimum and maximum support/bearing stiffness for critical speed map can be user specified and can include gyroscopic/speed effects.
- Amplification Factors. Amplification factors in accordance with API standards are computed for user specified stations by simply specifying the desired stations for this option.

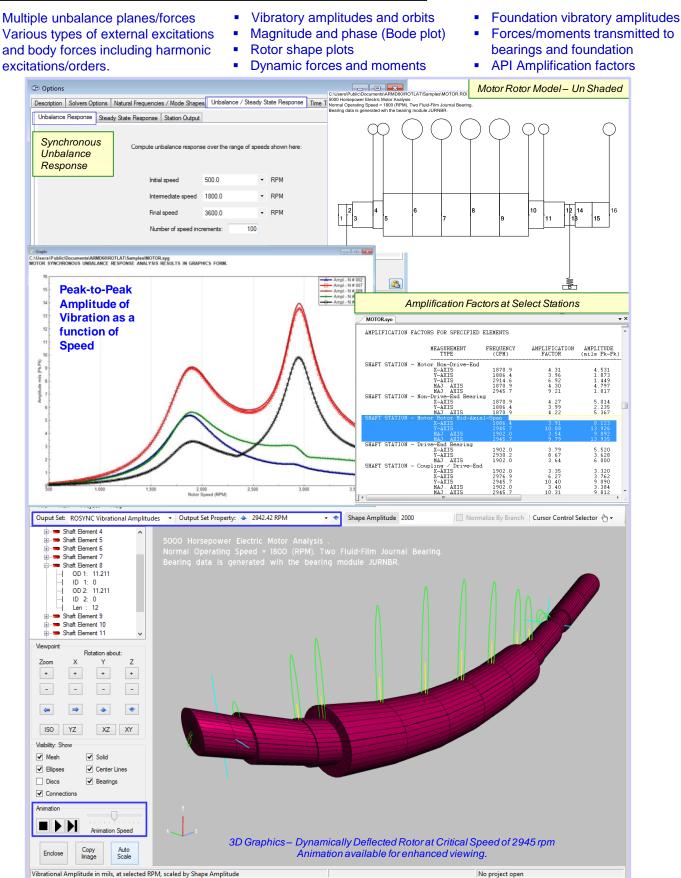



RBTS, Inc., 1041 West Bridge Street, Phoenixville, PA 19460, USA • Tel:610-415-0412 • www.rbts.com • info@rbts.com Page 11 of 18

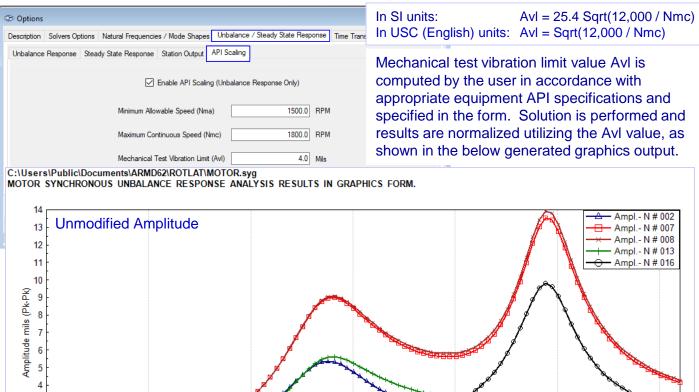
NATURAL FREQUENCY, MODE SHAPE & STABILITY


- Natural frequencies & mode shapes
- Damped and undamped simulation
- Stability parameters (damping ratio, logarithmic decrement)
- Rotor orbit direction (forward/reverse precession)

- Critical speed map
- Stability map / Campbell diagrams
- Bearing reaction forces
- Shaft weight, deflection, centerline slope, shaft moment, shear, & fiber stress diagrams



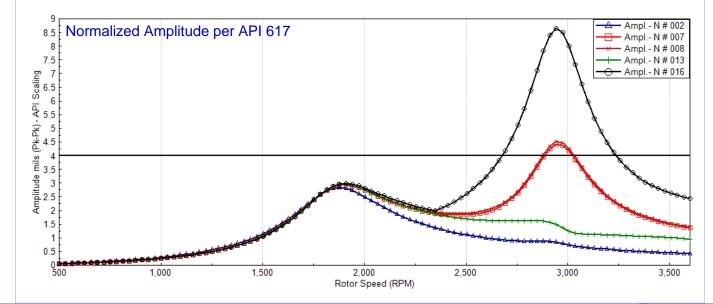
Generation of mode shapes as a function of support stiffness for Critical Speed maps and as a function of speed for Stability maps.



RBTS, Inc., 1041 West Bridge Street, Phoenixville, PA 19460, USA • Tel:610-415-0412 • www.rbts.com • info@rbts.com Page 14 of 18

ARMD[™] V6.2 – ROTLAT Package Synchronous UNBALANCE & STEADY-STATE RESPONSE

Implement feature for scaled amplitude of vibration to be user specified in the below form "API Scaling" tab. For example, API 617 criteria for compressors states "vibration response at each vibration probe, for considered unbalance amount and for cases of interest, shall not exceed the mechanical test vibration limit AvI, of 25.4 micrometer (1.0 mil) or the equation shown below, which ever is less".

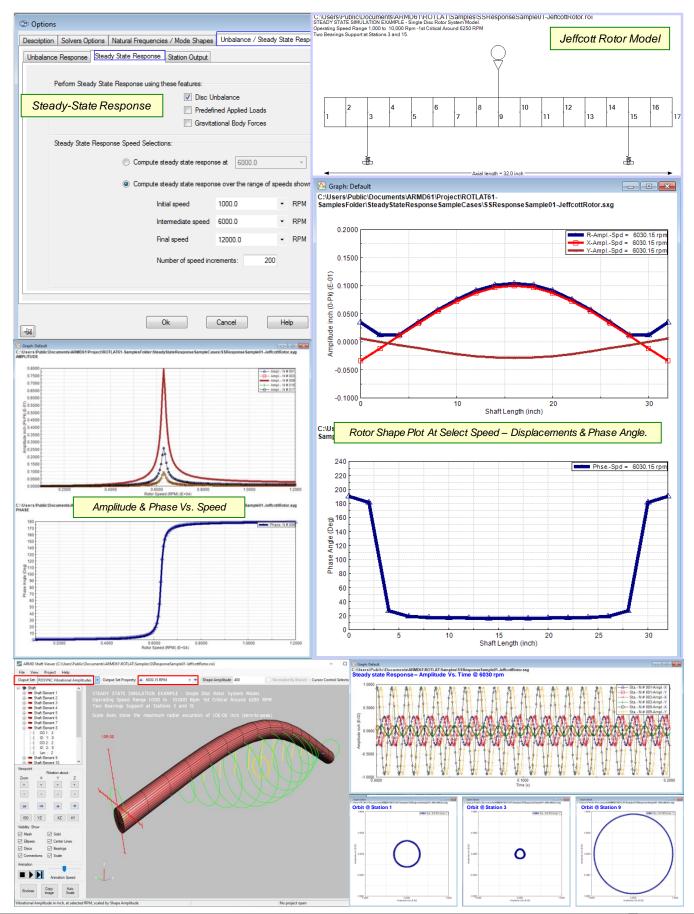

Rotor Speed (RPM)
C:\Users\Public\Documents\ARMD62\ROTLAT\MOTOR.syg

1.500

1 000

3 2

MOTOR SYNCHRONOUS UNBALANCE RESPONSE ANALYSIS RESULTS IN GRAPHICS FORM >> Per API 617 Normalized Amplitude <<.

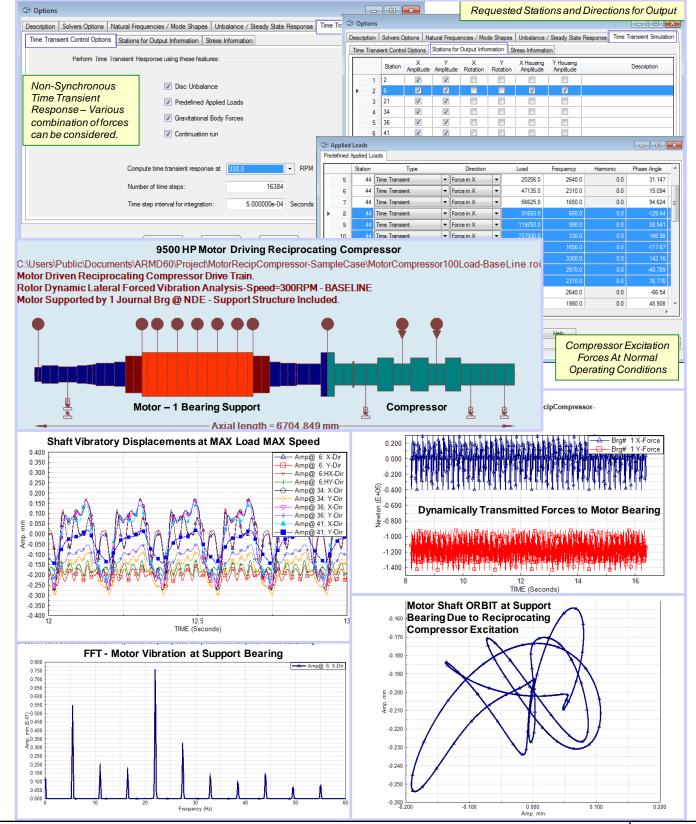

2.000

2.500

3.000

3 500

RBTS, Inc., 1041 West Bridge Street, Phoenixville, PA 19460, USA • Tel:610-415-0412 • www.rbts.com • info@rbts.com Page 16 of 18



0

0

TIME-TRANSIENT RESPONSE (Non-Synchronous)

- Gravitational and external forces: Multiple sinusoidal, step, ramp, pulse and unbalance
- Vibratory amplitudes time history
- Rotor orbits
 - Dynamic forces and moments
 - Dynamic stresses
- Transmitted forces and moments
- o Pedestal vibratory amplitudes

RBTS, Inc., 1041 West Bridge Street, Phoenixville, PA 19460, USA • Tel:610-415-0412 • www.rbts.com • info@rbts.com Page 18 of 18

Purchasing Options

ARMD is constructed from various solution modules. It can be tailored to suit your needs and budget. You may purchase any combination of programs/modules or all if you wish. Licensing is available as a single seat or multi-seat network configuration. With your purchase, the package includes the software (CD or download), quick start manual, electronic user's manual, technology transfer and training session (optional), updates, maintenance, and support.

System Requirements:

Personal computer with Microsoft Windows 8, 10, 11 or higher (32 or 64 bit).

Remember, with **RBTS**, you get more than just the programs, you get the company with more than 50 years of experience in the areas of tribology and machinery dynamics.

For further information, please contact us.

Rotor Bearing Technology & Software 1041 West Bridge Street Phoenixville, PA 19460 USA

Telephone: Facsimile: Web: Email:

610-415-0412 610-415-0413 www.rbts.com info@rbts.com

ARMD⁻ The Worldwide Leading Software For Rotating Machinery Analysis

Advanced Rotating Machinery Dynamics

ARMD is a well established software package used worldwide to perform complete rotating machinery dynamic analysis. ARMD employs a user-friendly interface and window environment with pulldown menus and context-sensitive help. ARMD integrates the most advanced and complete rotor dynamics, torsional vibration, and bearing analysis programs under one environment in a seamless fashion to give you the power to model your rotating machinery with ease, efficiency, and above all accuracy. Some applications in which ARMD has been utilized include rotating machinery such as a miniature air turbine for a dental drill, a large turbine generator set for a power plant, a small compressor for an air conditioner, a pump for an artificial heart, a fuel pump for a jet engine, an electric motor and spindle for a miniature computer hard disk, a canned pump for petrochemical processing plant, synchronous motor driven drivetrains, and a gear box for an Uranium enrichment plant.

- Technical Capabilities
- Completeness
- User Friendliness
- Support & Service

Rotor Bearing Technology & Software 1041 West Bridge Street Phoenixville, PA 19460, USA

Please contact **Dr. Andreas Laschet** as RBTS' consultant and representation for the regions **Europe, Middle East, Africa** with the following communication details:

Laschet Consulting GmbH · Friedrich-Ebert-Str. 75 · 51429 Bergisch Gladbach · GERMANY Phone: +49 2204 84-2630 · E-mail: <u>info@laschet.com</u> · Web: <u>www.laschet.com</u>

YOUR PARTNER for Europe & Middle East & Africa

Support for other countries on request.

• Customer Engineering Support (Rotor Dynamics & Torsional Vibrations)

ARMD Software Support

• Training Courses & Seminars

Please contact: Dr. Andreas Laschet

Laschet Consulting GmbH

Friedrich-Ebert-Str. 75 · D-51429 Bergisch Gladbach · GERMANY

Ph: +49 2204 84-2630 · E-mail: info@laschet.com · www.laschet.com