ergibt sich mit der Transformation

$$
\begin{equation*}
y=z \cdot \exp \left(-\frac{1}{2} \int f_{1}(t) \mathrm{d} t\right) \tag{7.2/5}
\end{equation*}
$$

und den Periodizitätsbedingungen für $f_{1}(t)$ und $f_{2}(t)$

$$
\begin{align*}
& f_{1}(t+T)=f_{1}(t) \tag{7.2/6a}\\
& f_{2}(t+T)=f_{2}(t) \tag{7.2/6~b}
\end{align*}
$$

die Hillsche Differentialgleichung:

$$
\begin{equation*}
\ddot{z}+g(t) \cdot z=0 \tag{7.2/7}
\end{equation*}
$$

mit

$$
\begin{equation*}
g(t+T)=g(t) \tag{7.2/7a}
\end{equation*}
$$

Ist die Anregungsfunktion $g(t)$ in der Form des Ansatzes nach (7.2/1) aufgebaut, so läßt sich aus der allgemeinen Bewegungsdifferentialgleichung für den Einmassenschwinger mit der Masse m

$$
\begin{equation*}
\ddot{z}+\omega_{0}^{2} \cdot \mathrm{z}=0 \tag{7.2/8}
\end{equation*}
$$

mit

$$
\omega_{0}=\sqrt{\frac{c_{v \mathrm{stat}}}{m}}
$$

und aus den Abkürzungen

$$
\begin{align*}
\tau & =\frac{\pi}{2}-\Omega_{z} \cdot t \tag{7.2/9a}\\
\lambda & =\left(\frac{\omega_{0}}{\Omega_{z}}\right)^{2} \tag{7.2/9b}\\
\gamma & =\frac{c_{v} \mathrm{dyn}}{m \cdot \Omega_{z}^{2}} \tag{7.2/9c}
\end{align*}
$$

die Normalform der Mathieuschen Differentialgleichung herleiten /3.1-2, 5.1-1, 7.2-9, 7.2-10/:

$$
\begin{equation*}
z^{\prime \prime}+(\lambda+\gamma \cdot \cos \tau) \cdot z=0 \tag{7.2/10}
\end{equation*}
$$

In der obigen Gleichung bedeuten die hochgestellten Striche Ableitungen nach der dimensionslosen Zeit τ.

